Antiviral properties of polylactic acid and nano-TiO2 for 3D printing

  1. López-Camacho, Anyul 2
  2. José Grande, María 3
  3. Carazo-Álvarez, Daniel 2
  4. La Rubia, M.Dolores 1
  1. 1 Chemical, Environmental and Materials Engineering Department, University of Jaén, Spain
  2. 2 Mechanical and Mining Engineering Department, University of Jaén, Campus Las Lagunillas s/n, Jaén, Spain
  3. 3 Health Sciences Department, University of Jaén, Spain
Revue:
Materials Letters

ISSN: 0167-577X

Année de publication: 2024

Volumen: 372

Pages: 137039

Type: Article

DOI: 10.1016/J.MATLET.2024.137039 GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Materials Letters

Résumé

Throughout history, viruses have consistently adapted to survive and spread. Understanding airborne transmission and surface survival emphasizes the necessity for antiviral materials. This study demonstrates virucidal reduction of human Coronavirus 229E and Feline Calicivirus on a polylactic acid and titanium dioxide nanoparticle composite with photocatalytic activity and UV activation. Mechanical properties and UV spectroscopy are also examined, suggesting the potential of the composite in medical and food applications through additive manufacturing.

Information sur le financement

Références bibliographiques

  • Depaola, (2000), Oral Surgery, Oral Med Oral Pathol. Oral Radiol. Endodontology, 90, pp. 266, 10.1067/moe.2000.108916
  • Huang, (2021), Infect. Genet. Evol., 92, 10.1016/j.meegid.2021.104885
  • Van Doremalen, (2020), N. Engl. J. Med., 382, pp. 1564, 10.1056/NEJMc2004973
  • Zhou, (2021), Nano Today, 36
  • Balagna, (2020), Open Ceram., 1
  • Randazzo, (2018), Compr. Rev. Food Sci. Food Saf., 17, pp. 754, 10.1111/1541-4337.12349
  • Kaseem, (2014), New Dev. Polylactic Acid Res., 111–132
  • Kokila, (2022), Inorg. Nano-Metal Chem.
  • Kaseem, (2019), Materials (basel)., 12
  • Mazurkova, N. A.; Spitsyna, Y. E.; Shikina, N. V.; Ismagilov, Z. R.; Zagrebel’nyi, S. N.; Ryabchikova, E. I. Nanotechnologies Russ. 5, 417–420 (2010).
  • Syngouna, (2017), J. Colloid Interface Sci., 497, pp. 117, 10.1016/j.jcis.2017.02.059
  • Matsuura, (2021), Viruses, 13, 10.3390/v13050942
  • Yoshizawa, (2020), Viruses, 12, pp. 1, 10.3390/v12121372
  • Varghese, (2022), Med., 5
  • López-Camacho, (2023), Bioengineering, 10, 10.3390/bioengineering10030297
  • International Standards Organization (ISO). ISO 18061 Determination of antiviral activity of semiconducting photocatalytic materials — Test method using bacteriophage Q-beta. 2014, (2014).
  • Panayotov, (2012), J. Phys. Chem. C, 116, pp. 6623, 10.1021/jp209215c
  • Bono, (2021), Materials (basel)., 14, pp. 1, 10.3390/ma14051075
  • Nosaka, (2016), J. Phys. Chem. Lett., 7, pp. 431, 10.1021/acs.jpclett.5b02804
  • Marșavina, (2022), Eng. Fract. Mech., 274, 10.1016/j.engfracmech.2022.108766
  • Hanon, (2020), Procedia Manuf., 54, pp. 244, 10.1016/j.promfg.2021.07.038