Antiviral properties of polylactic acid and nano-TiO2 for 3D printing

  1. López-Camacho, Anyul 2
  2. José Grande, María 3
  3. Carazo-Álvarez, Daniel 2
  4. La Rubia, M.Dolores 1
  1. 1 Chemical, Environmental and Materials Engineering Department, University of Jaén, Spain
  2. 2 Mechanical and Mining Engineering Department, University of Jaén, Campus Las Lagunillas s/n, Jaén, Spain
  3. 3 Health Sciences Department, University of Jaén, Spain
Zeitschrift:
Materials Letters

ISSN: 0167-577X

Datum der Publikation: 2024

Ausgabe: 372

Seiten: 137039

Art: Artikel

DOI: 10.1016/J.MATLET.2024.137039 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Materials Letters

Zusammenfassung

Throughout history, viruses have consistently adapted to survive and spread. Understanding airborne transmission and surface survival emphasizes the necessity for antiviral materials. This study demonstrates virucidal reduction of human Coronavirus 229E and Feline Calicivirus on a polylactic acid and titanium dioxide nanoparticle composite with photocatalytic activity and UV activation. Mechanical properties and UV spectroscopy are also examined, suggesting the potential of the composite in medical and food applications through additive manufacturing.

Informationen zur Finanzierung

Bibliographische Referenzen

  • Depaola, (2000), Oral Surgery, Oral Med Oral Pathol. Oral Radiol. Endodontology, 90, pp. 266, 10.1067/moe.2000.108916
  • Huang, (2021), Infect. Genet. Evol., 92, 10.1016/j.meegid.2021.104885
  • Van Doremalen, (2020), N. Engl. J. Med., 382, pp. 1564, 10.1056/NEJMc2004973
  • Zhou, (2021), Nano Today, 36
  • Balagna, (2020), Open Ceram., 1
  • Randazzo, (2018), Compr. Rev. Food Sci. Food Saf., 17, pp. 754, 10.1111/1541-4337.12349
  • Kaseem, (2014), New Dev. Polylactic Acid Res., 111–132
  • Kokila, (2022), Inorg. Nano-Metal Chem.
  • Kaseem, (2019), Materials (basel)., 12
  • Mazurkova, N. A.; Spitsyna, Y. E.; Shikina, N. V.; Ismagilov, Z. R.; Zagrebel’nyi, S. N.; Ryabchikova, E. I. Nanotechnologies Russ. 5, 417–420 (2010).
  • Syngouna, (2017), J. Colloid Interface Sci., 497, pp. 117, 10.1016/j.jcis.2017.02.059
  • Matsuura, (2021), Viruses, 13, 10.3390/v13050942
  • Yoshizawa, (2020), Viruses, 12, pp. 1, 10.3390/v12121372
  • Varghese, (2022), Med., 5
  • López-Camacho, (2023), Bioengineering, 10, 10.3390/bioengineering10030297
  • International Standards Organization (ISO). ISO 18061 Determination of antiviral activity of semiconducting photocatalytic materials — Test method using bacteriophage Q-beta. 2014, (2014).
  • Panayotov, (2012), J. Phys. Chem. C, 116, pp. 6623, 10.1021/jp209215c
  • Bono, (2021), Materials (basel)., 14, pp. 1, 10.3390/ma14051075
  • Nosaka, (2016), J. Phys. Chem. Lett., 7, pp. 431, 10.1021/acs.jpclett.5b02804
  • Marșavina, (2022), Eng. Fract. Mech., 274, 10.1016/j.engfracmech.2022.108766
  • Hanon, (2020), Procedia Manuf., 54, pp. 244, 10.1016/j.promfg.2021.07.038