Optimisation of sugar and solid biofuel co-production from almond tree prunings by acid pretreatment and enzymatic hydrolysis

  1. Cuevas-Aranda, Manuel 1
  2. Martínez-Cartas, Mª Lourdes 1
  3. Mnasser, Fahd 1
  4. Karim, Adnan Asad 1
  5. Sánchez, Sebastián 1
  1. 1 Department of Chemical, Environmental and Materials Engineering, University of Jaén, Avda. de La Universidad s/n, 23700, Linares, Spain
Revista:
Bioresources and Bioprocessing

ISSN: 2197-4365

Año de publicación: 2024

Volumen: 11

Número: 1

Tipo: Artículo

DOI: 10.1186/S40643-024-00743-X GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Bioresources and Bioprocessing

Resumen

Almond pruning biomass is an important agricultural residue that has been scarcely studied for the co-production of sugars and solid biofuels. In this work, the production of monosaccharides from almond prunings was optimised by a two-step process scheme: pretreatment with dilute sulphuric acid (0.025 M, at 185.9–214.1 ℃ for 0.8–9.2 min) followed by enzyme saccharification of the pretreated cellulose. The application of a response surface methodology enabled the mathematical modelling of the process, establishing pretreatment conditions to maximise both the amount of sugar in the acid prehydrolysate (23.4 kg/100 kg raw material, at 195.7 ℃ for 3.5 min) and the enzymatic digestibility of the pretreated cellulose (45.4%, at 210.0 ℃ for 8.0 min). The highest overall sugar yield (36.8 kg/100 kg raw material, equivalent to 64.3% of all sugars in the feedstock) was obtained with a pretreatment carried out at 197.0 ℃ for 4.0 min. Under these conditions, moreover, the final solids showed better properties for thermochemical utilisation (22.0 MJ/kg heating value, 0.87% ash content, and 72.1 mg/g moisture adsorption capacity) compared to those of the original prunings.

Información de financiación

Referencias bibliográficas

  • Aguado R, Cuevas M, Pérez-Villarejo L et al (2020) Upgrading almond-tree pruning as a biofuel via wet torrefaction. Renew Energy 145:2091–2100. https://doi.org/10.1016/j.renene.2019.07.142
  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:1–11. https://doi.org/10.1186/1754-6834-3-4
  • Barreca D, Nabavi SM, Sureda A et al (2020) Health Research Institute of the Balearic Islands (IdISBa), and CIBEROBN (Physiopathology of Obesity and Nutrition Nutrients 2020, 12, 672. Nutrients 2020:672
  • Cao L, Chen H, Tsang DCW et al (2018) Optimizing xylose production from pinewood sawdust through dilute-phosphoric-acid hydrolysis by response surface methodology. J Clean Prod 178:572–579. https://doi.org/10.1016/j.jclepro.2018.01.039
  • Cara C, Ruiz E, Oliva JM et al (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876. https://doi.org/10.1016/j.biortech.2007.03.037
  • Chin KL, H’ng PS, Paridah MT et al (2015) Reducing ash related operation problems of fast growing timber species and oil palm biomass for combustion applications using leaching techniques. Energy 90:622–630. https://doi.org/10.1016/j.energy.2015.07.094
  • Cuevas M, García JF, Sánchez S (2014) Enhanced enzymatic hydrolysis of pretreated almond-tree prunings for sugar production. Carbohydr Polym 99:791–799. https://doi.org/10.1016/j.carbpol.2013.08.089
  • FAOSTAT (2023) In: Crop livest prod. In data. https://www.fao.org/faostat/en/#data/QCLAccessed on 4 Oct 2023.
  • García Martín JF, Sánchez S, Cuevas M (2013) Evaluation of the effect of the dilute acid hydrolysis on sugars release from olive prunings. Renew Energy 51:382–387. https://doi.org/10.1016/j.renene.2012.10.002
  • Ghose TK (1987) Measurement of cellulase activities. Int Union Pure Appl Chem 59:257–268. https://doi.org/10.1111/j.1468-2389.1995.tb00038.x
  • Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand—A Phys Chem 81:53–66
  • Gundupalli MP, Bhattacharyya D (2019) Sequential acid hydrolysis and enzymatic saccharification of coconut coir for recovering reducing sugar: process evaluation and optimization. Bioresour Technol Reports 6:70–80. https://doi.org/10.1016/j.biteb.2019.01.015
  • Hasan Ba Hamid HS, Ku Ismail KS (2020) Optimization of enzymatic hydrolysis for acid pretreated date seeds into fermentable sugars. Biocatal Agric Biotechnol 24:101530. https://doi.org/10.1016/j.bcab.2020.101530
  • He J, Huang C, Lai C et al (2022) Revealing the mechanism of lignin re-polymerization inhibitor in acidic pretreatment and its impact on enzymatic hydrolysis. Ind Crops Prod 179:114631. https://doi.org/10.1016/j.indcrop.2022.114631
  • Heinonen J, Sainio T (2013) Chromatographic fractionation of lignocellulosic hydrolysates, 1st edn. Elsevier Inc, Amsterdam
  • Hu Y, Priya A, Chen C et al (2023) Recent advances in substrate-enzyme interactions facilitating efficient biodegradation of lignocellulosic biomass: a review. Int Biodeterior Biodegrad 180:105594. https://doi.org/10.1016/j.ibiod.2023.105594
  • Huang C, Zhao X, Zheng Y et al (2022) Revealing the mechanism of surfactant-promoted enzymatic hydrolysis of dilute acid pretreated bamboo. Bioresour Technol. https://doi.org/10.1016/j.biortech.2022.127524
  • Johnston CS, Sweazea KL, Schwab E, McElaney EA (2017) Almond ingestion contributes to improved cardiovascular health in sedentary older adults participating in a walking intervention: a pilot study. J Funct Foods 39:58–62. https://doi.org/10.1016/j.jff.2017.10.010
  • Jung YH, Kim KH (2015) Chapter 3—acidic pretreatment. In: Pandey A, Negi S, Binod P (eds) Larroche CBT-P of B. Elsevier, Amsterdam, pp 27–50
  • Kabel MA, Bos G, Zeevalking J et al (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98:2034–2042. https://doi.org/10.1016/j.biortech.2006.08.006
  • Lee I, Yu JH (2020) The production of fermentable sugar and bioethanol from acacia wood by optimizing dilute sulfuric acid pretreatment and post treatment. Fuel 275:117943. https://doi.org/10.1016/j.fuel.2020.117943
  • Lee DG, Ku MJ, Kim KH et al (2021) Experimental investigation of the ash deposition characteristics of biomass pretreated by ash removal during co-combustion with sub-bituminous coal. Energies. https://doi.org/10.3390/en14217391
  • Lim HY, Rashidi NA (2023) Lignocellulosic biomass conversion into 5-hydroxymethylfurfural and 2,5-dimethylfuran, and role of the ‘Green’ solvent. Curr Opin Green Sustain Chem 41:100803. https://doi.org/10.1016/j.cogsc.2023.100803
  • Liu Y, Wang W, Wang Y et al (2022) Enhanced pyrolysis of lignocellulosic biomass by room-temperature dilute sulfuric acid pretreatment. J Anal Appl Pyrolysis 166:105588. https://doi.org/10.1016/j.jaap.2022.105588
  • López-Linares JC, Romero I, Moya M et al (2013) Pretreatment of olive tree biomass with FeCl3 prior enzymatic hydrolysis. Bioresour Technol 128:180–187. https://doi.org/10.1016/j.biortech.2012.10.076
  • Ma L, Goldfarb JL, Song J et al (2022) Enhancing cleaner biomass-coal co-combustion by pretreatment of wheat straw via washing versus hydrothermal carbonization. J Clean Prod 366:132991. https://doi.org/10.1016/j.jclepro.2022.132991
  • Maksimuk Y, Antonava Z, Krouk V et al (2021) Prediction of higher heating value (HHV) based on the structural composition for biomass. Fuel. https://doi.org/10.1016/j.fuel.2021.120860
  • MAPA (2022) Análisis provincial de superficie, árboles diseminados, rendimiento y producción, 2022. In: Av. datos frutales no cítricos y frutales secos. https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/. Accessed 11 Mar 2023
  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determintation of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030WE
  • Montané D, Salvadó J, Torras C, Farriol X (2002) High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenerg 22:295–304. https://doi.org/10.1016/S0961-9534(02)00007-7
  • Naqvi SR, Khoja AH, Ali I et al (2023) Recent progress in catalytic deoxygenation of biomass pyrolysis oil using microporous zeolites for green fuels production. Fuel 333:126268. https://doi.org/10.1016/j.fuel.2022.126268
  • Piao C, Winandy JE, Shupe TF (2010) From Hydrophilicity To Hydrophobicity: a critical review : Part I. Wettability and Surface Behavior. Wood Fiber Sci 42:490–510
  • Popp J, Kovács S, Oláh J et al (2021) Bioeconomy: biomass and biomass-based energy supply and demand. N Biotechnol 60:76–84. https://doi.org/10.1016/j.nbt.2020.10.004
  • Romero I, López-Linares JC, Moya M, Castro E (2018) Optimization of sugar recovery from rapeseed straw pretreated with FeCl3. Bioresour Technol 268:204–211. https://doi.org/10.1016/j.biortech.2018.07.112
  • Saini JK, Himanshu H et al (2022) Strategies to enhance enzymatic hydrolysis of lignocellulosic biomass for biorefinery applications: a review. Bioresour Technol 360:127517. https://doi.org/10.1016/j.biortech.2022.127517
  • Saleh M, Cuevas M, García JF, Sánchez S (2014) Valorization of olive stones for xylitol and ethanol production from dilute acid pretreatment via enzymatic hydrolysis and fermentation by Pachysolen tannophilus. Biochem Eng J 90:286–293. https://doi.org/10.1016/j.bej.2014.06.023
  • Sekyere DT, Zhang J, Chen Y et al (2023) Production of light olefins and aromatics via catalytic co-pyrolysis of biomass and plastic. Fuel 333:126339. https://doi.org/10.1016/j.fuel.2022.126339
  • Shahbazi A, Zhang B (2010) 5—Dilute and concentrated acid hydrolysis of lignocellulosic biomass. In: Waldron K (ed) Bioalcohol Production. Woodhead Publishing, Cambridge, pp 143–158
  • Shatalov AA, Pereira H (2012) Xylose production from giant reed (Arundo donax L.): modeling and optimization of dilute acid hydrolysis. Carbohydr Polym 87:210–217. https://doi.org/10.1016/j.carbpol.2011.07.041
  • Solarte-Toro JC, Chacón-Pérez Y, Piedrahita-Rodríguez S et al (2020) Effect of dilute sulfuric acid pretreatment on the physicochemical properties and enzymatic hydrolysis of coffee cut-stems. Energy. https://doi.org/10.1016/j.energy.2020.116986
  • Valizadeh S, Hakimian H, Farooq A et al (2022) Valorization of biomass through gasification for green hydrogen generation: a comprehensive review. Bioresour Technol 365:128143. https://doi.org/10.1016/j.biortech.2022.128143
  • Van Leeuwen BNM, Van Der Wulp AM, Duijnstee I et al (2012) Fermentative production of isobutene. Appl Microbiol Biotechnol 93:1377–1387. https://doi.org/10.1007/s00253-011-3853-7
  • Velázquez-Martí B, Fernández-González E, López-Cortés I, Salazar-Hernández DM (2011) Quantification of the residual biomass obtained from pruning of trees in Mediterranean almond groves. Renew Energy 36:621–626. https://doi.org/10.1016/j.renene.2010.08.008
  • Vidal BC, Dien BS, Ting KC, Singh V (2011) Influence of feedstock particle size on lignocellulose conversion—A review. Appl Biochem Biotechnol 164:1405–1421. https://doi.org/10.1007/s12010-011-9221-3
  • Voogt J, Humblet-Hua NP, Geerdink P et al (2023) Valorisation of multiple components from residual biomass for food and biofuel applications: a virtual biorefinery evaluation. Food Bioprod Process 139:1–10. https://doi.org/10.1016/j.fbp.2023.02.002
  • Woytiuk K, Campbell W, Gerspacher R et al (2017) The effect of torrefaction on syngas quality metrics from fluidized bed gasification of SRC willow. Renew Energy 101:409–416. https://doi.org/10.1016/j.renene.2016.08.071
  • Yildirim O, Tunay D, Ozkaya B, Demir A (2022) Optimization of oxalic and sulphuric acid pretreatment conditions to produce bio-hydrogen from olive tree biomass. Int J Hydrogen Energy 47:26316–26325. https://doi.org/10.1016/j.ijhydene.2021.11.017
  • Yuan Y, Jiang B, Chen H et al (2021) Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnol Biofuels 14:1–20. https://doi.org/10.1186/s13068-021-02054-1
  • Zheng Y, Wang J, Wang D, Zheng Z (2022) Advanced catalytic upgrading of biomass pyrolysis vapor to bio-aromatics hydrocarbon: a review. Appl Energy Combust Sci 10:100061. https://doi.org/10.1016/j.jaecs.2022.100061
  • Zhou Z, Liu D, Zhao X (2021) Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew Sustain Energy Rev 146:111169. https://doi.org/10.1016/j.rser.2021.111169