Minimal graphs in three-dimensional Killing submersions

  1. DEL PRETE, Andrea
Dirigée par:
  1. José Miguel Manzano Prego Directeur
  2. Barbara Nelli Co-directeur/trice

Université de défendre: Universidad de Jaén

Fecha de defensa: 04 mars 2024

Jury:
  1. Ildefonso Castro López President
  2. Barbara Nelli Secrétaire
  3. María Magdalena Rodríguez Pérez Rapporteur
  4. José Miguel Manzano Prego Rapporteur
  5. Giuseppe Pipoli Rapporteur

Type: Thèses

Teseo: 838984 DIALNET

Résumé

The goal of this thesis is to enrich the theory of minimal graphs in three-dimensional Killing submersions. A Killing submersion is a Riemannian submersion from a three-dimensional manifold E onto a Riemannian surface M whose fibers are integral curves of a Killing field. In this context, a Killing graph is a smooth section of the submersion. In this thesis, we study three problems. First, we solve the Jenkins-Serrin problem for the minimal surface equation over relatively compact domains of M with prescribed (possibly infinite) boundary values. Second, we solve the Dirichlet problem for minimal Killing graphs over certain unbounded domains of M, taking piecewise continuous boundary values, and study the uniqueness of solutions over unbounded domains of M obtaining general Collin-Krust type estimates. Finally, we develop a conformal duality for spacelike graphs in Riemannian and Lorentzian Killing submersions with applications to the existence of entire graphs with prescribed mean curvature.