Fermentation of Sugar by Thermotolerant Hansenula polymorpha Yeast for Ethanol Production

  1. Karim, Adnan Asad 12
  2. Martínez-Cartas, Mª Lourdes 12
  3. Cuevas-Aranda, Manuel 12
  1. 1 Department of Chemical, Environmental and Materials Engineering, Science & Technology Campus (Linares), University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain
  2. 2 University Institute of Research on Olive and Olive Oils (INUO), University of Jaen, Campus de las Lagunillas s/n, 23071 Jaén, Spain
Revista:
Fermentation

ISSN: 2311-5637

Año de publicación: 2024

Volumen: 10

Número: 5

Páginas: 260

Tipo: Artículo

DOI: 10.3390/FERMENTATION10050260 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Fermentation

Resumen

Hansenula polymorpha is a non-conventional and thermo-tolerant yeast that is well-known for its use in the industrial production of recombinant proteins. However, research to evaluate this yeast’s potential for the high-temperature fermentation of sugar to produce alcohols for biofuel applications is limited. The present work investigated a wild-type H. polymorpha strain (DSM 70277) for the production of ethanol at a temperature of 40 °C under limited oxygen presence by using a batch fermentation reactor. Fermentation experiments were performed using three types of sugar (glucose, fructose, xylose) as substrates with two initial inoculum concentrations (1.1 g·L−1 and 5.0 g·L−1). The maximum specific growth rates of H. polymorpha yeast were 0.121–0.159 h−1 for fructose, 0.140–0.175 h−1 for glucose, and 0.003–0.009 h−1 for xylose. The biomass volumetric productivity was 0.270–0.473 g·L−1h−1 (fructose), 0.185–0.483 g·L−1h−1 (glucose), and 0.001–0.069 g·L−1h−1 (xylose). The overall yield of ethanol from glucose (0.470 g·g−1) was higher than that from fructose (0.434 g·g−1) and xylose (0.071 g·g−1). The H. polymorpha yeast exhibited different behavior and efficacy regarding the use of glucose, fructose, and xylose as substrates for producing ethanol. The present knowledge could be applied to improve the fermentation process for valorization of waste biomass to produce bioethanol.

Información de financiación

Financiadores

  • European Union
    • 101062601

Referencias bibliográficas

  • Reshmy, (2022), Fuel, 308, pp. 122056, 10.1016/j.fuel.2021.122056
  • Claassen, (1999), Appl. Microbiol. Biotechnol., 52, pp. 741, 10.1007/s002530051586
  • Hamelinck, (2006), Energy Policy, 34, pp. 3268, 10.1016/j.enpol.2005.06.012
  • Saravanan, (2016), Renew. Sustain. Energy Rev., 60, pp. 84, 10.1016/j.rser.2016.01.085
  • Mendiburu, (2022), Energy, 257, pp. 124688, 10.1016/j.energy.2022.124688
  • Limayem, (2012), Prog. Energy Combust. Sci., 38, pp. 449, 10.1016/j.pecs.2012.03.002
  • Reshmy, R., Philip, E., Unni, R., Paul, S.A., Sindhu, R., Madhavan, A., Sirohi, R., Pandey, A., and Binod, P. (2023). Valorization of Biomass to Bioproducts: Organic Acids and Biofuels, Elsevier.
  • David, A.J., Abinandan, S., Vaidyanathan, V.K., Xu, C.C., and Krishnamurthi, T. (2023). A Critical Review on Current Status and Environmental Sustainability of Pre-Treatment Methods for Bioethanol Production from Lignocellulose Feedstocks. 3 Biotech, 13.
  • Melendez, (2022), Renew. Sustain. Energy Rev., 160, pp. 112260, 10.1016/j.rser.2022.112260
  • Zhang, (2012), Nature, 488, pp. 320, 10.1038/nature11478
  • Oh, (2018), Bioresour. Technol., 257, pp. 320, 10.1016/j.biortech.2018.02.089
  • Klein, (2019), Biofuels Bioprod. Biorefining, 13, pp. 809, 10.1002/bbb.1969
  • Kumar, A.K., and Sharma, S. (2017). Recent Updates on Different Methods of Pretreatment of Lignocellulosic Feedstocks: A Review. Bioresour. Bioprocess., 4.
  • Peinemann, J.C., and Pleissner, D. (2020). Continuous Pretreatment, Hydrolysis, and Fermentation of Organic Residues for the Production of Biochemicals. Bioresour. Technol., 295.
  • Zabaniotou, (2018), J. Clean. Prod., 177, pp. 197, 10.1016/j.jclepro.2017.12.172
  • Conteratto, (2021), Renew. Sustain. Energy Rev., 151, pp. 111527, 10.1016/j.rser.2021.111527
  • Martins, M., Sganzerla, W.G., Forster-Carneiro, T., and Goldbeck, R. (2023). Recent Advances in Xylo-Oligosaccharides Production and Applications: A Comprehensive Review and Bibliometric Analysis. Biocatal. Agric. Biotechnol., 47.
  • Weber, (2010), Appl. Microbiol. Biotechnol., 87, pp. 1303, 10.1007/s00253-010-2707-z
  • Lee, J.W. (2012). Advanced Biofuels and Bioproducts, Springer. [1st ed.].
  • Capilla, M., Silvestre, C., Valles, A., Álvarez-Hornos, F.J., San-Valero, P., and Gabaldón, C. (2022). The Influence of Sugar Composition and PH Regulation in Batch and Continuous Acetone–Butanol–Ethanol Fermentation. Fermentation, 8.
  • Ruchala, (2020), J. Ind. Microbiol. Biotechnol., 47, pp. 109, 10.1007/s10295-019-02242-x
  • Lee, F.A. (1983). Basic Food Chemistry, Springer.
  • Nanda, S., Pattnaik, F., Patra, B.R., Kang, K., and Dalai, A.K. (2023). A Review of Liquid and Gaseous Biofuels from Advanced Microbial Fermentation Processes. Fermentation, 9.
  • Kasavi, (2012), Biomass Bioenergy, 45, pp. 230, 10.1016/j.biombioe.2012.06.013
  • Lin, (2014), Biomass Bioenergy, 47, pp. 395, 10.1016/j.biombioe.2012.09.019
  • Hoshida, (2010), Appl. Microbiol. Biotechnol., 85, pp. 861, 10.1007/s00253-009-2248-5
  • Kurylenko, (2014), Microb. Cell Fact., 13, pp. 112, 10.1186/s12934-014-0122-3
  • Abdulla, (2017), Biochem. Biophys. Rep., 10, pp. 52
  • Cheng, (2011), Renew. Energy, 36, pp. 3541, 10.1016/j.renene.2011.04.031
  • Hoshida, H., and Akada, R. (2017). Biotechnology of Yeasts and Filamentous Fungi, Springer.
  • Gellissen, G., and Hollenberg, C.P. (1999). Enyclopedia of Food Microbiology, Elsevier.
  • Radecka, (2015), FEMS Yeast Res., 15, pp. fov053, 10.1093/femsyr/fov053
  • Bravo, (2012), Ind. Crops Prod., 40, pp. 160, 10.1016/j.indcrop.2012.03.001
  • Olivares, (2019), Eng. Life Sci., 19, pp. 522, 10.1002/elsc.201900011
  • Yamakawa, C.K., Kastell, L., Mahler, M.R., Martinez, J.L., and Mussatto, S.I. (2020). Exploiting New Biorefinery Models Using Non-Conventional Yeasts and Their Implications for Sustainability. Bioresour. Technol., 309.
  • Ryabova, (2003), FEMS Yeast Res., 4, pp. 157, 10.1016/S1567-1356(03)00146-6
  • (1994), Enzyme Microb. Technol., 16, pp. 944, 10.1016/0141-0229(94)90003-5
  • Lindegren, (1958), Nature, 182, pp. 446, 10.1038/182446a0
  • (2024, May 13). LSCI General Catalogue 2019. Languedoc Scientifique Company: Rivesaltes, France. Available online: https://lsci.fr/index.php/page-d-exemple/.
  • Bravo, (1998), Appl. Microbiol. Biotechnol., 50, pp. 608, 10.1007/s002530051343
  • Bray, D. (2003). Supercritical Fluid. Methods and Protocols, Humana Press.
  • Manfrão-Netto, J.H.C., Queiroz, E.B., Rodrigues, K.A., Coelho, C.M., Paes, H.C., Rech, E.L., and Parachin, N.S. (2021). Evaluation of Ogataea (Hansenula) Polymorpha for Hyaluronic Acid Production. Microorganisms, 9.
  • Losen, (2003), FEMS Yeast Res., 4, pp. 195, 10.1016/S1567-1356(03)00147-8
  • Ghoul, (2016), Trends Microbiol., 24, pp. 833, 10.1016/j.tim.2016.06.011
  • Ginovart, (2011), Food Microbiol., 28, pp. 810, 10.1016/j.fm.2010.05.004
  • Kanwal, M., Wattoo, A.G., Khushnood, R.A., Liaqat, A., Iqbal, R., and Song, Z. (2022). Applications of Next Generation Biosurfactants in the Food Sector, Elsevier.
  • Mian, (1971), Folia Microbiol., 16, pp. 249, 10.1007/BF02872806
  • Denenu, (1981), Appl. Environ. Microbiol., 41, pp. 1088, 10.1128/aem.41.5.1088-1096.1981
  • Feliu, (1990), Process Biochem., 25, pp. 136
  • Escalante, (1990), J. Chem. Technol. Biotechnol., 48, pp. 61, 10.1002/jctb.280480106
  • Wang, (2013), J. Ind. Microbiol. Biotechnol., 40, pp. 841, 10.1007/s10295-013-1282-6
  • Jeffries, (2007), Nat. Biotechnol., 25, pp. 319, 10.1038/nbt1290
  • Sibirny, (2023), BBA Adv., 3, pp. 100071, 10.1016/j.bbadva.2022.100071
  • Kurylenko, O.O., Ruchala, J., Vasylyshyn, R.V., Stasyk, O.V., Dmytruk, O.V., Dmytruk, K.V., and Sibirny, A.A. (2018). Peroxisomes and Peroxisomal Transketolase and Transaldolase Enzymes Are Essential for Xylose Alcoholic Fermentation by the Methylotrophic Thermotolerant Yeast, Ogataea (Hansenula) Polymorpha. Biotechnol. Biofuels, 11.
  • Jeffries, (2004), Appl. Microbiol. Biotechnol., 63, pp. 495, 10.1007/s00253-003-1450-0