Industrial Two-Phase Olive Pomace Slurry-Derived Hydrochar Fuel for Energy Applications
- Karim, Adnan Asad 12
- Martínez-Cartas, Mª Lourdes 12
- Cuevas-Aranda, Manuel 12
- 1 Department of Chemical, Environmental and Materials Engineering, Science & Technology Campus (Linares), University of Jaén, Avda. de la Universidad s/n, 23700 Linares, Spain
- 2 University Institute of Research on Olive and Olive Oils (INUO), University of Jaén, Campus de las Lagunillas s/n, 23071 Jaén, Spain
ISSN: 2073-4360
Año de publicación: 2024
Volumen: 16
Número: 11
Páginas: 1529
Tipo: Artículo
Otras publicaciones en: Polymers
Resumen
The present study aims to resolve the existing research gaps on olive pomace (OP) hydrochars application as a fuel by evaluating its molecular structures (FTIR and solid NMR analysis), identifying influential characteristics (Pearson correlation analysis), process optimization (response surface methodology), slagging–fouling risks (empirical indices), and combustion performance (TG-DSC analysis). The response surfaces plot for hydrothermal carbonization (HTC) of OP slurry performed in a pressure reactor under varied temperatures (180–250 °C) and residence times (2–30 min) revealed 250 °C for 30 min to be optimal conditions for producing hydrochar fuel with a higher heating value (32.20 MJ·Kg−1) and energy densification ratio (1.40). However, in terms of process efficiency and cost-effectiveness, the optimal HTC conditions for producing the hydrochar with the highest energy yield of 87.9% were 202.7 °C and 2.0 min. The molecular structure of hydrochar was mainly comprised of aromatic rings with methyl groups, alpha-C atoms of esters, and ether bond linkages of lignin fractions. The slagging and fouling risks of hydrochars were comparatively lower than those of raw OP, as indicated by low slagging and fouling indices. The Pearson correlation analysis emphasized that the enrichment of acid-insoluble lignin and extractive contents, carbon densification, and reduced ash content were the main pivotal factors for hydrochar to exhibit better biofuel characteristics for energy applications.
Información de financiación
Financiadores
-
European Union under Horizon Europe Marie Skłodowska-Curie Actions (MSCA), the MSCA European Postdoctoral Fellowships program
- HORIZON-MSCA-2021-PF-01
- HORIZON-TMA-MSCA-PF-EF
- 101062601
Referencias bibliográficas
- IRENA (2023). World Energy Transitions Outlook 2023—1.5 °C Pathway—Preview, International Renewable Energy Agency.
- IRENA (2023). Agricultural Residue-Based Bioenergy: Regional Potential and Scale-up Strategies, International Renewable Energy Agency.
- Khan, (2021), J. Clean. Prod., 288, pp. 125629, 10.1016/j.jclepro.2020.125629
- Zhang, (2022), Environ. Chem. Lett., 20, pp. 211, 10.1007/s10311-021-01311-x
- Petrović, J., Ercegović, M., Simić, M., Koprivica, M., Dimitrijević, J., Jovanović, A., and Janković Pantić, J. (2024). Hydrothermal Carbonization of Waste Biomass: A Review of Hydrochar Preparation and Environmental Application. Processes, 12.
- Kambo, (2014), Appl. Energy, 135, pp. 182, 10.1016/j.apenergy.2014.08.094
- Wang, (2019), Renew. Sustain. Energy Rev., 108, pp. 423, 10.1016/j.rser.2019.04.011
- Ischia, (2021), Waste Biomass Valorization, 12, pp. 2797, 10.1007/s12649-020-01255-3
- MAPA (2024, May 10). Spanish Ministry of Agriculture, Fisheries and Food. Anuario de estadística 2022. Chapter 07: Crop Surfaces and Crop Production, Available online: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/default.aspx.
- Altieri, (2013), J. Food Eng., 119, pp. 561, 10.1016/j.jfoodeng.2013.06.033
- Alburquerque, (2004), Bioresour. Technol., 91, pp. 195, 10.1016/S0960-8524(03)00177-9
- Díaz-Perete, D., Hermoso-Orzáez, M.J., Carmo-Calado, L., Martín-Doñate, C., and Terrados-Cepeda, J. (2023). Energy Recovery from Polymeric 3D Printing Waste and Olive Pomace Mixtures via Thermal Gasification—Effect of Temperature. Polymers, 15.
- Gimenez, M., Rodríguez, M., Montoro, L., Sardella, F., Rodríguez-Gutierrez, G., Monetta, P., and Deiana, C. (2020). Two Phase Olive Mill Waste Valorization. Hydrochar Production and Phenols Extraction by Hydrothermal Carbonization. Biomass Bioenergy, 143.
- Jurado-Contreras, S., Navas-Martos, F.J., Rodríguez-Liébana, J.A., Moya, A.J., and La Rubia, M.D. (2022). Manufacture and Characterization of Recycled Polypropylene and Olive Pits Biocomposites. Polymers, 14.
- Jurado-Contreras, S., Navas-Martos, F.J., García-Ruiz, Á., Rodríguez-Liébana, J.A., and La Rubia, M.D. (2023). Obtaining Cellulose Nanocrystals from Olive Tree Pruning Waste and Evaluation of Their Influence as a Reinforcement on Biocomposites. Polymers, 15.
- Schmidt, L., Prestes, O.D., Augusti, P.R., and Fonseca Moreira, J.C. (2023). Phenolic Compounds and Contaminants in Olive Oil and Pomace—A Narrative Review of Their Biological and Toxic Effects. Food Biosci., 53.
- Berbel, J., and Posadillo, A. (2018). Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil by-Products. Sustainability, 10.
- Dahdouh, (2023), Environ. Sci. Pollut. Res., 30, pp. 45473, 10.1007/s11356-023-25867-z
- Raviv, (2016), Chemosphere, 156, pp. 220, 10.1016/j.chemosphere.2016.04.104
- Christofi, A., Fella, P., Agapiou, A., Barampouti, E.M., Mai, S., Moustakas, K., and Loizidou, M. (2024). The Impact of Drying and Storage on the Characteristics of Two-Phase Olive Pomace. Sustainability, 16.
- Micali, (2019), AIP Conf. Proc., 2191, pp. 020112, 10.1063/1.5138845
- Birinci, (2021), J. Clean. Prod., 315, pp. 128087, 10.1016/j.jclepro.2021.128087
- Semaan, J.N., Belandria, V., Missaoui, A., Sarh, B., Gökalp, I., and Bostyn, S. (2022). Energy Analysis of Olive Pomace Valorization via Hydrothermal Carbonization. Biomass Bioenergy, 165.
- Dahdouh, (2023), Ind. Crops Prod., 205, pp. 117519, 10.1016/j.indcrop.2023.117519
- Pfeifer, (2024), Energy, 290, pp. 130234, 10.1016/j.energy.2024.130234
- Azzaz, (2020), C. R. Chim., 23, pp. 635, 10.5802/crchim.61
- Ncube, A., Fiorentino, G., Panfilo, C., De Falco, M., and Ulgiati, S. (2022). Circular Economy Paths in the Olive Oil Industry: A Life Cycle Assessment Look into Environmental Performance and Benefits. Int. J. Life Cycle Assess.
- Negro, M.J., Manzanares, P., Ruiz, E., Castro, E., and Ballesteros, M. (2017). Olive Mill Waste: Recent Advances for Sustainable Management, Academic Press.
- Romero, (2024), ChemBioEng Rev., 11, pp. 253, 10.1002/cben.202300045
- Robertson, (1991), J. Dairy. Sci., 74, pp. 3583, 10.3168/jds.S0022-0302(91)78551-2
- Missaoui, (2017), J. Anal. Appl. Pyrolysis, 128, pp. 281, 10.1016/j.jaap.2017.09.022
- Wirth, (2018), J. Environ. Chem. Eng., 6, pp. 5481, 10.1016/j.jece.2018.07.053
- (2011). Acid-Insoluble Lignin in Wood and Pulp (Reaffirmation of T 222 Om-02) (Standard No. TAPPI T 222).
- (1998). n-Hexane Extractable Material (Hem) for Sludge, Sediment, and Solid Samples (Standard No. USEPA Method 9071B).
- (2010). Solid Biofuels—Determination of the Content of Volatile Matter (Standard No. UNE-EN 15148:2010).
- Park, (2022), Energy Rep., 8, pp. 12038, 10.1016/j.egyr.2022.09.040
- Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., and Templeton, D. (2008). Determination of Ash in Biomass-NREL/TP-510-42622.
- (2019). Standard Test Methods for Analysis of Wood Fuels (Standard No. ASTM E870-82).
- Xu, X., Tu, R., Sun, Y., Wu, Y., Jiang, E., Gong, Y., and Li, Y. (2019). The Correlation of Physicochemical Properties and Combustion Performance of Hydrochar with Fixed Carbon Index. Bioresour. Technol., 294.
- Tu, (2021), Energy, 229, pp. 120572, 10.1016/j.energy.2021.120572
- Wang, G., Li, R., Dan, J., Yuan, X., Shao, J., Liu, J., Xu, K., Li, T., Ning, X., and Wang, C. (2023). Preparation of Biomass Hydrochar and Application Analysis of Blast Furnace Injection. Energies, 16.
- (2024, February 05). Oxide—Carbonate—Element Conversion Table. Available online: https://jepspectro.com/electron_microprobe/oxide_conversion.htm.
- Lachman, (2021), Fuel Process. Technol., 217, pp. 106804, 10.1016/j.fuproc.2021.106804
- Liu, (2023), Chem. Eng. J., 473, pp. 145191, 10.1016/j.cej.2023.145191
- Benedetti, V., Pecchi, M., and Baratieri, M. (2022). Combustion Kinetics of Hydrochar from Cow-Manure Digestate via Thermogravimetric Analysis and Peak Deconvolution. Bioresour. Technol., 353.
- Cuevas, (2019), Energy Fuels, 33, pp. 313, 10.1021/acs.energyfuels.8b03335
- Biswas, S., Rahaman, T., Gupta, P., Mitra, R., Dutta, S., Kharlyngdoh, E., Guha, S., Ganguly, J., Pal, A., and Das, M. (2022). Cellulose and Lignin Profiling in Seven, Economically Important Bamboo Species of India by Anatomical, Biochemical, FTIR Spectroscopy and Thermogravimetric Analysis. Biomass Bioenergy, 158.
- Gao, (2016), Energy, 97, pp. 238, 10.1016/j.energy.2015.12.123
- Gierlinger, (2008), Biomacromolecules, 9, pp. 2194, 10.1021/bm800300b
- Ibrahim, (2013), J. Anal. Appl. Pyrolysis, 103, pp. 21, 10.1016/j.jaap.2012.10.004
- Park, (2013), J. Anal. Appl. Pyrolysis, 100, pp. 199, 10.1016/j.jaap.2012.12.024
- Popescu, (2007), Appl. Spectrosc., 61, pp. 1168, 10.1366/000370207782597076
- Aguado, (2020), Renew. Energy, 145, pp. 2091, 10.1016/j.renene.2019.07.142
- Faix, (1991), Eur. J. Wood Wood Prod., 49, pp. 356, 10.1007/BF02662706
- Petrakis, (1967), J. Chem. Educ., 44, pp. 432, 10.1021/ed044p432
- Saito, (2004), Metrologia, 41, pp. 213, 10.1088/0026-1394/41/3/015
- Chen, (2020), Sci. Total Environ., 748, pp. 141354, 10.1016/j.scitotenv.2020.141354
- Kostryukov, (2022), Russ. J. Bioorg. Chem., 48, pp. 1441, 10.1134/S1068162022070111
- Kostryukov, (2021), Polym. Sci.—Ser. B, 63, pp. 544, 10.1134/S1560090421050067
- Falco, (2011), Green Chem., 13, pp. 3273, 10.1039/c1gc15742f
- Lin, (2016), Energy Fuels, 30, pp. 7746, 10.1021/acs.energyfuels.6b01365
- Zhuang, (2019), Fuel, 236, pp. 960, 10.1016/j.fuel.2018.09.019
- Tekin, (2014), Renew. Sustain. Energy Rev., 40, pp. 673, 10.1016/j.rser.2014.07.216
- Funke, (2010), Biofuels Bioprod. Biorefining, 4, pp. 160, 10.1002/bbb.198
- Shi, (2019), Energy Fuels, 33, pp. 9904, 10.1021/acs.energyfuels.9b02174
- Bobleter, (1994), Prog. Polym. Sci., 19, pp. 797, 10.1016/0079-6700(94)90033-7
- Calucci, L., and Forte, C. (2023). Influence of Process Parameters on the Hydrothermal Carbonization of Olive Tree Trimmings: A 13C Solid-State NMR Study. Appl. Sci., 13.
- Volpe, (2017), J. Anal. Appl. Pyrolysis, 124, pp. 63, 10.1016/j.jaap.2017.02.022
- Kumar, A., Saini, K., and Bhaskar, T. (2020). Hydochar and Biochar: Production, Physicochemical Properties and Techno-Economic Analysis. Bioresour. Technol., 310.
- Sevilla, (2009), Carbon, 4, pp. 2281, 10.1016/j.carbon.2009.04.026
- Kalan, (2007), Geologija, 50, pp. 403, 10.5474/geologija.2007.028
- Demirbas, (2002), Energy Explor. Exploit., 20, pp. 105, 10.1260/014459802760170420
- Esteves, B., Sen, U., and Pereira, H. (2023). Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis. Energies, 16.
- Nutalapati, (2007), Fuel Process. Technol., 88, pp. 1044, 10.1016/j.fuproc.2007.06.022
- Zhu, (2018), Energy Fuels, 32, pp. 11538, 10.1021/acs.energyfuels.8b02484
- Lin, (2015), Appl. Therm. Eng., 91, pp. 574, 10.1016/j.applthermaleng.2015.08.064
- Liu, (2014), Appl. Energy, 114, pp. 857, 10.1016/j.apenergy.2013.06.027
- Smith, (2016), Fuel, 169, pp. 135, 10.1016/j.fuel.2015.12.006
- Zhang, (2018), Energy, 165, pp. 527, 10.1016/j.energy.2018.09.174
- Wang, (2021), J. Wood Sci., 67, pp. 19, 10.1186/s10086-021-01952-0
- Yang, (2007), Fuel, 86, pp. 1781, 10.1016/j.fuel.2006.12.013