La influencia de las ideas previas del concepto de fuerza en el rendimiento de los estudiantes en los cursos introductorios de física de la universidad

  1. Ramos Tejada, María del Mar 1
  2. Quesada Pérez, Manuel 1
  3. Peláez, José Antonio 1
  4. Henares, Jesús 2
  1. 1 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

  2. 2 Universidad Internacional de La Rioja
    info

    Universidad Internacional de La Rioja

    Logroño, España

    ROR https://ror.org/029gnnp81

Revista:
Educa: revista internacional para la calidad educativa

ISSN: 2792-7660

Año de publicación: 2024

Volumen: 4

Número: 1

Páginas: 61-74

Tipo: Artículo

DOI: 10.55040/EDUCA.V4I1.88 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Educa: revista internacional para la calidad educativa

Resumen

El aprendizaje de la física puede resultar difícil debido, entre otras cosas, a la presencia de preconceptos, es decir, ideas que los estudiantes creen que son ciertas pero que no son científicamente correctas. En este trabajo hemos utilizado una versión reducida del Force Concept Inventory (FCI) para estudiar los preconceptos más comunes sobre el concepto de fuerza entre los estudiantes de primer curso de los grados de Ingeniería Industrial de la Universidad de Jaén. Se ha investigado la influencia de estos preconceptos en los resultados de los estudiantes en los exámenes de física. Se ha encontrado que los preconceptos tienen una influencia significativa en el fracaso académico (el 75% de los estudiantes que abandonaron la asignatura tenían una puntuación en el FCI, antes de comenzar el curso, inferior al 40%). Pero no todos los preconceptos parecen tener el mismo impacto en los resultados académicos. Se han analizado en detalle los ocho preconceptos que estaban presentes en más del 30 % de los estudiantes y sólo uno de ellos parece ser relevante para el rendimiento de los mismos, mientras que cuatro de ellos no parecen ser influyentes.

Referencias bibliográficas

  • Alwan, A.A. (2011). Misconception of heat and temperature among physics students. International Conference on Education and Educational Psychology 2010, 12, 600-614. https://doi.org/10.1016/j.sbspro.2011.02.074
  • Aviani, I., Erceg, N. and Mesic, V. (2015). Drawing and using free body diagrams: Why it may be better not to decompose forces. Phys. Rev. ST Phys. Educ. Res., 11(2), 020137. https://doi.org/10.1103/PhysRevSTPER.11.020137
  • Chong, K.E., Wong, K.L., Leung, C.W. and Ting, F. (2019). Flipped-classroom with interactive videos in first year undergraduate physics course in Hong Kong. Proc. SPIE 11143, Fifteenth Conference on Education and Training in Optics and Photonics: ETOP 2019, 1114335. https://doi.org/10.1117/12.2523439
  • Clement, J. (1987). The use of analogies and anchoring intuitions to remediate misconceptions in mechanics. Paper presented at the Annual Meeting of the American Educational Research Association, Washington.
  • Covián Regales, E. and Celemín Matachana, M. (2008). Diez años de evaluación de la enseñanza-aprendizaje de la mecánica de Newton en escuelas de ingeniería españolas. Rendimiento académico y presencia de preconceptos. Enseñanza de las Ciencias, 26(1), 23-42. https://doi.org/10.5565/rev/ensciencias.3687
  • Dwyer, M. (2019). Exploring the relationship among students’ preconceptions, attitudes, and major. [Graduate Research Theses & Dissertations, Northern Illinois University]. Huskie Commons. https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/3031
  • Eaton, P., Johnson, K. and Willoughby, S. (2019a). Generating a growth-oriented partial credit grading model for the Force Concept Inventory. Phys. Rev. Phys. Educ. Res., 15(2), 020151. https://doi.org/10.1103/PhysRevPhysEducRes.15.020151
  • Eaton, P., Vavruska, K. and Willoughby, S. (2019b). Exploring the preinstruction and postinstruction non-Newtonian world views as measured by the Force Concept Inventory. Phys. Rev. Phys. Educ. Res., 15(1), 010123. https://doi.org/10.1103/PhysRevPhysEducRes.15.010123
  • Fadllan, A. and Prawira, W. Y. (2019). Analysis of students’ misconceptions on mechanics using three-tier diagnostic test and clinical interview. J. Phys.: Conf. Ser., 1170(1), 012027. https://doi.org/10.1088/1742-6596/1170/1/012027
  • Hake, R.R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64-74. https://doi.org/10.1119/1.18809
  • Harrison, D. and Serbanescu, R. (2017). Threshold Concepts in Physics. Practice and Evidence of Scholarship of Teaching and Learning in Higher Education Special Issue: Threshold Concepts and Conceptual Difficulty, 12(2), 352-377.
  • Hestenes, D. (1997). Modeling methodology for physics teachers. AIP Conference Proceedings, 399, 935-958. https://doi.org/10.1063/1.53196
  • Hestenes, D., Wells, M. and Swackhamer, G. (1992). Force Concept Inventory. The Physics Teacher, 30, 141-158. https://doi.org/10.1119/1.2343497
  • Liang, L.L., Fulmer, G.W., Majerich, D.M., Clevenstine, R. and Howanski, R. (2012). The Effects of a Model-Based Physics Curriculum Program with a Physics First Approach: a Causal-Comparative Study. J. Sci. Educ. Technol., 21, 114-124. https://doi.org/10.1007/s10956-011-9287-2
  • Mackay, J. (2019). Developing and tracking profiles of student conceptions of force through an engineering degree. J. Phys.: Conf. Ser., 1286(1), 012003. https://doi.org/10.1088/1742-6596/1286/1/012003
  • Martín-Blas, T., Seidel, L. and Serrano-Fernández, A. (2010). Enhancing Force Concept Inventory diagnostics to identify dominant misconceptions in first-year engineering physics. European Journal of Engineering Education, 35(6), 597-606. https://doi.org/10.1080/03043797.2010.497552
  • Mercier, J., Whissell-Turner, K., Paradis, A., Avaca, I.L., Riopel, M. and Bédard, M. (2020). Do Individual Differences Modulate the Effect of Agency on Learning Outcomes with a Serious Game? In: P. Zaphiris, P. and A. Ioannou (eds.), Learning and Collaboration Technologies. Human and Technology Ecosystems. HCII 2020. LNCS 12206. (pp. 254-266). Springer, Cham. https://doi.org/10.1007/978-3-030-50506-6_19
  • Mora, C. and Herrera, D. (2009). Una revisión sobre ideas previas del concepto de fuerza. Lat. Am. J. Phys. Educ., 3(1), 72-86.
  • Olmstead, M. (2019). Using Games to Understand Physics Concepts. Phys. Teach., 57(5), 304-307. https://doi.org/10.1119/1.5098918
  • Physport. (2011). Supporting physics teaching with research-based resources. https://www.physport.org/guides/browse.cfm
  • Prada-Núñez, R., Hernández-Suarez, C.A. and Gamboa-Suarez, A.A. (2022). Newton’s law learning assessment: An experience with high school students. J. Phys.: Conf. Ser., 2153(1), 012020. https://doi.org/10.1088/1742-6596/2153/1/012020
  • Ramos-Tejada, M.M., Henares, J., Quesada, P., Peláez, J.A. and García, J.A. (2018) Herramientas de diagnóstico: “concept inventories”. https://www.ujaen.es/departamentos/fisica/portal-de-recursos-docentes/recursos-docentes-especificos-profesorado/herramientas-de-diagnostico
  • Resbiantoro, G. and Setiani, R. (2022). A review of misconception in physics: the diagnosis, causes, and remediation. Journal of Turkish Science Education, 19(2), 403-427.
  • Savinainen, A. and Scott, P. (2002). Using the Force Concept Inventory to monitor student learning and to plan teaching. Phys. Educ., 37, 53. https://doi.org/10.1088/0031-9120/37/1/307
  • Scott, T.F. and Schumayer, D. (2018). Central distractors in Force Concept Inventory data. Phys. Rev. Phys. Educ. Res., 14(1), 010106. https://doi.org/10.1103/PhysRevPhysEducRes.14.010106
  • Stoen, S.M., McDaniel, M.A., Frey, R.F., Hynes, K. M. and Cahill, M.J. (2020). Force Concept Inventory: More than just conceptual understanding. Phys. Rev. Phys. Educ. Res., 16(1), 010105. https://doi.org/10.1103/PhysRevPhysEducRes.16.010105
  • Syuhendri, S. (2021). Effect of conceptual change texts on physics education students’ conceptual understanding in kinematics. J. Phys.: Conf. Ser., 1876(1), 012090. https://doi.org/10.1088/1742-6596/1876/1/012090
  • Tarjányiová, G., Hockicko, P., Kopylova, N., Dyagilev, A. and Ivanikov, A. (2020). Comparison of physics study results at the technical universities in different countries. 2020 ELEKTRO, Taormina, Italy, 2020, 4 pp. https://doi.org/10.1109/ELEKTRO49696.2020.9130208
  • Van Heuvelen, A. (1991). Learning to think like a physicist: A review of research-based instructional strategies. Am. J. Phys., 59(10), 891-897. https://doi.org/10.1119/1.16667
  • Vicovaro, M. (2023). Grounding Intuitive Physics in Perceptual Experience. J. Intell., 11(10), 187. https://doi.org/10.3390/jintelligence11100187
  • Wattanakasiwich, P., Taleab, P., Sharma, M.D. and Johnston, I.D. (2013). Construction and implementation of a conceptual survey in thermodynamics. International Journal of Innovation in Science and Mathematics Education, 21(1), 29-53.
  • Wells, J., Henderson, R., Stewart, J., Stewart, G., Yang, J. and Traxler, A. (2019). Exploring the structure of misconceptions in the Force Concept Inventory with modified module analysis. Phys. Rev. Phys. Educ. Res., 15, 020122. https://doi.org/10.1103/PhysRevPhysEducRes.15.020122