La influencia de las ideas previas del concepto de fuerza en el rendimiento de los estudiantes en los cursos introductorios de física de la universidad

  1. Ramos Tejada, María del Mar 1
  2. Quesada Pérez, Manuel 1
  3. Peláez, José Antonio 1
  4. Henares, Jesús 2
  1. 1 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

  2. 2 Universidad Internacional de La Rioja
    info

    Universidad Internacional de La Rioja

    Logroño, España

    ROR https://ror.org/029gnnp81

Journal:
Educa: revista internacional para la calidad educativa

ISSN: 2792-7660

Year of publication: 2024

Volume: 4

Issue: 1

Pages: 61-74

Type: Article

DOI: 10.55040/EDUCA.V4I1.88 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Educa: revista internacional para la calidad educativa

Abstract

Learning of physics becomes hard due, among other things, to the presence of misconceptions, i.e., ideas that students believe to be true but which are not scientifically correct. In this work, a reduced version of the Force Concept Inventory (FCI) was used to study the most common misconceptions about force among first-year industrial engineering students at the University of Jaen. The influence of these misconceptions on the students’ performance on physics exams has been investigated. Misconceptions have a significant influence on academic failure (75 per cent of students that drop out had an inventory score, prior the teaching program, below 40 per cent). But not all misconceptions seem to have the same impact on academic results. We have analyzed in detail the eight misconceptions that are present in more than 30 % of the students and only one of them seems to be relevant to students’ performance, whereas four of them do not appear to be influential.

Bibliographic References

  • Alwan, A.A. (2011). Misconception of heat and temperature among physics students. International Conference on Education and Educational Psychology 2010, 12, 600-614. https://doi.org/10.1016/j.sbspro.2011.02.074
  • Aviani, I., Erceg, N. and Mesic, V. (2015). Drawing and using free body diagrams: Why it may be better not to decompose forces. Phys. Rev. ST Phys. Educ. Res., 11(2), 020137. https://doi.org/10.1103/PhysRevSTPER.11.020137
  • Chong, K.E., Wong, K.L., Leung, C.W. and Ting, F. (2019). Flipped-classroom with interactive videos in first year undergraduate physics course in Hong Kong. Proc. SPIE 11143, Fifteenth Conference on Education and Training in Optics and Photonics: ETOP 2019, 1114335. https://doi.org/10.1117/12.2523439
  • Clement, J. (1987). The use of analogies and anchoring intuitions to remediate misconceptions in mechanics. Paper presented at the Annual Meeting of the American Educational Research Association, Washington.
  • Covián Regales, E. and Celemín Matachana, M. (2008). Diez años de evaluación de la enseñanza-aprendizaje de la mecánica de Newton en escuelas de ingeniería españolas. Rendimiento académico y presencia de preconceptos. Enseñanza de las Ciencias, 26(1), 23-42. https://doi.org/10.5565/rev/ensciencias.3687
  • Dwyer, M. (2019). Exploring the relationship among students’ preconceptions, attitudes, and major. [Graduate Research Theses & Dissertations, Northern Illinois University]. Huskie Commons. https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/3031
  • Eaton, P., Johnson, K. and Willoughby, S. (2019a). Generating a growth-oriented partial credit grading model for the Force Concept Inventory. Phys. Rev. Phys. Educ. Res., 15(2), 020151. https://doi.org/10.1103/PhysRevPhysEducRes.15.020151
  • Eaton, P., Vavruska, K. and Willoughby, S. (2019b). Exploring the preinstruction and postinstruction non-Newtonian world views as measured by the Force Concept Inventory. Phys. Rev. Phys. Educ. Res., 15(1), 010123. https://doi.org/10.1103/PhysRevPhysEducRes.15.010123
  • Fadllan, A. and Prawira, W. Y. (2019). Analysis of students’ misconceptions on mechanics using three-tier diagnostic test and clinical interview. J. Phys.: Conf. Ser., 1170(1), 012027. https://doi.org/10.1088/1742-6596/1170/1/012027
  • Hake, R.R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64-74. https://doi.org/10.1119/1.18809
  • Harrison, D. and Serbanescu, R. (2017). Threshold Concepts in Physics. Practice and Evidence of Scholarship of Teaching and Learning in Higher Education Special Issue: Threshold Concepts and Conceptual Difficulty, 12(2), 352-377.
  • Hestenes, D. (1997). Modeling methodology for physics teachers. AIP Conference Proceedings, 399, 935-958. https://doi.org/10.1063/1.53196
  • Hestenes, D., Wells, M. and Swackhamer, G. (1992). Force Concept Inventory. The Physics Teacher, 30, 141-158. https://doi.org/10.1119/1.2343497
  • Liang, L.L., Fulmer, G.W., Majerich, D.M., Clevenstine, R. and Howanski, R. (2012). The Effects of a Model-Based Physics Curriculum Program with a Physics First Approach: a Causal-Comparative Study. J. Sci. Educ. Technol., 21, 114-124. https://doi.org/10.1007/s10956-011-9287-2
  • Mackay, J. (2019). Developing and tracking profiles of student conceptions of force through an engineering degree. J. Phys.: Conf. Ser., 1286(1), 012003. https://doi.org/10.1088/1742-6596/1286/1/012003
  • Martín-Blas, T., Seidel, L. and Serrano-Fernández, A. (2010). Enhancing Force Concept Inventory diagnostics to identify dominant misconceptions in first-year engineering physics. European Journal of Engineering Education, 35(6), 597-606. https://doi.org/10.1080/03043797.2010.497552
  • Mercier, J., Whissell-Turner, K., Paradis, A., Avaca, I.L., Riopel, M. and Bédard, M. (2020). Do Individual Differences Modulate the Effect of Agency on Learning Outcomes with a Serious Game? In: P. Zaphiris, P. and A. Ioannou (eds.), Learning and Collaboration Technologies. Human and Technology Ecosystems. HCII 2020. LNCS 12206. (pp. 254-266). Springer, Cham. https://doi.org/10.1007/978-3-030-50506-6_19
  • Mora, C. and Herrera, D. (2009). Una revisión sobre ideas previas del concepto de fuerza. Lat. Am. J. Phys. Educ., 3(1), 72-86.
  • Olmstead, M. (2019). Using Games to Understand Physics Concepts. Phys. Teach., 57(5), 304-307. https://doi.org/10.1119/1.5098918
  • Physport. (2011). Supporting physics teaching with research-based resources. https://www.physport.org/guides/browse.cfm
  • Prada-Núñez, R., Hernández-Suarez, C.A. and Gamboa-Suarez, A.A. (2022). Newton’s law learning assessment: An experience with high school students. J. Phys.: Conf. Ser., 2153(1), 012020. https://doi.org/10.1088/1742-6596/2153/1/012020
  • Ramos-Tejada, M.M., Henares, J., Quesada, P., Peláez, J.A. and García, J.A. (2018) Herramientas de diagnóstico: “concept inventories”. https://www.ujaen.es/departamentos/fisica/portal-de-recursos-docentes/recursos-docentes-especificos-profesorado/herramientas-de-diagnostico
  • Resbiantoro, G. and Setiani, R. (2022). A review of misconception in physics: the diagnosis, causes, and remediation. Journal of Turkish Science Education, 19(2), 403-427.
  • Savinainen, A. and Scott, P. (2002). Using the Force Concept Inventory to monitor student learning and to plan teaching. Phys. Educ., 37, 53. https://doi.org/10.1088/0031-9120/37/1/307
  • Scott, T.F. and Schumayer, D. (2018). Central distractors in Force Concept Inventory data. Phys. Rev. Phys. Educ. Res., 14(1), 010106. https://doi.org/10.1103/PhysRevPhysEducRes.14.010106
  • Stoen, S.M., McDaniel, M.A., Frey, R.F., Hynes, K. M. and Cahill, M.J. (2020). Force Concept Inventory: More than just conceptual understanding. Phys. Rev. Phys. Educ. Res., 16(1), 010105. https://doi.org/10.1103/PhysRevPhysEducRes.16.010105
  • Syuhendri, S. (2021). Effect of conceptual change texts on physics education students’ conceptual understanding in kinematics. J. Phys.: Conf. Ser., 1876(1), 012090. https://doi.org/10.1088/1742-6596/1876/1/012090
  • Tarjányiová, G., Hockicko, P., Kopylova, N., Dyagilev, A. and Ivanikov, A. (2020). Comparison of physics study results at the technical universities in different countries. 2020 ELEKTRO, Taormina, Italy, 2020, 4 pp. https://doi.org/10.1109/ELEKTRO49696.2020.9130208
  • Van Heuvelen, A. (1991). Learning to think like a physicist: A review of research-based instructional strategies. Am. J. Phys., 59(10), 891-897. https://doi.org/10.1119/1.16667
  • Vicovaro, M. (2023). Grounding Intuitive Physics in Perceptual Experience. J. Intell., 11(10), 187. https://doi.org/10.3390/jintelligence11100187
  • Wattanakasiwich, P., Taleab, P., Sharma, M.D. and Johnston, I.D. (2013). Construction and implementation of a conceptual survey in thermodynamics. International Journal of Innovation in Science and Mathematics Education, 21(1), 29-53.
  • Wells, J., Henderson, R., Stewart, J., Stewart, G., Yang, J. and Traxler, A. (2019). Exploring the structure of misconceptions in the Force Concept Inventory with modified module analysis. Phys. Rev. Phys. Educ. Res., 15, 020122. https://doi.org/10.1103/PhysRevPhysEducRes.15.020122