Obtención de biocombustibles vía Fischer-Tropsch a partir de gas de síntesis procedente de una planta piloto de gasificación

  1. Muñoz Acebedo, Pedro José
Dirigida por:
  1. Juan Félix González González Director/a
  2. Beatriz Ledesma Cano Codirector/a
  3. Vicente Montes Jiménez Codirector/a

Universidad de defensa: Universidad de Extremadura

Fecha de defensa: 23 de noviembre de 2022

Tribunal:
  1. Eulogio Castro Galiano Presidente
  2. Silvia Román Suero Secretario/a
  3. José María Sánchez Hervás Vocal

Tipo: Tesis

Teseo: 758793 DIALNET lock_openTESEO editor

Resumen

Introducción Entre los retos medioambientales actuales destacan, por un lado, dar solución al exceso de CO2 emitido a la atmósfera y, por otro, cómo obtener un combustible de aviación de origen renovable, dado que no existe un sustituto de este tipo para dichos combustibles. La presente tesis tiene como finalidad la obtención de hidrocarburos a partir de un gas de síntesis, mezcla de CO e H2, o de CO2 con H2 de origen renovable. Se emplea como vía de conversión la Síntesis Fischer-Tropsch (FT), utilizando catalizadores bifuncionales que sintetizan hidrocarburos desde dióxido o monóxido de carbono a hidrocarburos de forma directa, sin procesos intermedios. El resultado de la síntesis son varias fases: sólida, líquida acuosa, líquida orgánica y gaseosa, en función de la longitud de la cadena del hidrocarburo que predomine. En concreto, los hidrocarburos buscados son de cadena lineal comprendidos entre C10 y C15 que son los componentes principales de los querosenos de aviación. Desarrollo teórico Durante la experimentación se han sintetizado catalizadores de carburo de hierro, con oxalato de hierro como precursor y empleando como fase activa χ-Fe5C2 (Carburo de Hägg), con el empleo de aditivos de K y Cu, soportes de Grafito y SiO2 y demostrando la viabilidad de los catalizadores bifuncionales mediante pruebas con CO y CO2. Se han obtenido altos rendimientos de conversión a hidrocarburos para el CO, del 98%, y de CO2, próximos al 18%. Dentro de las series experimentales se han probado distintas rampas de activación, resultando la rampa a 34 h en la que se obtuvo los mejores resultados. Los valores de producción de hidrocarburos líquidos obtenidos han sido de 0,17 g de HC líquido·gcat-1·h-1, para un tiempo en corriente de 201 h. A su vez, se han analizado los productos y comprobado que siguen la distribución estadística Anderson-Schulz-Flory (ASF). Los catalizadores fueron probados con gas de síntesis real con alto contenido en azufre para comprobar su resistencia. También se han caracterizado los catalizadores mediante las técnicas de adsorción de N2, XRD y SEM. Además, se tiene como fin demostrar la viabilidad del proceso real, integrando en línea las fases de producción de gas de síntesis, limpieza, depuración, compresión del gas y síntesis a hidrocarburos. Para ello se ha diseñado y construido un reactor catalítico apto para llevar a cabo la síntesis Fischer-Tropsch y una etapa de compresión y almacenamiento de gas de síntesis. Las etapas de generación, limpieza y depuración se realizaron mediante la adaptación de equipos existentes. Por último, se ha realizado un análisis energético y económico de los costes de transformación sobre el proceso propuesto.   Conclusión Las conclusiones más destacables obtenidas en el presente trabajo son las siguientes: 1ª La rampa de activación que presentó mejor comportamiento en cuanto a conversión, producción de C3+ y características superficiales del catalizador fue la rampa 3 de 34 horas. 2ª En general los catalizadores sintetizados presentaron buenos resultados de conversión y selectividad con CO, excepto el 6 que presentó una conversión inferior al resto, pero una producción de hidrocarburos pesados y ceras muy superior. El catalizador sobre el que se obtuvo la mejor relación de conversión y producción de C3+ con CO fue la síntesis 10, que sintetizó a partir de nitrato de hierro y glicerina. 3ª La síntesis con CO2 presentó unos valores de conversión muy inferiores a los obtenidos con CO. El catalizador que mejores resultados obtuvo, atendiendo a la relación entre conversión y selectividad fue la síntesis 7, en la que se empleó oxalato de hierro al que se añadió K y Cu. 4ª En cuanto a la mezcla de CO y CO2 se observó que, de forma general el CO2 inhibe la síntesis del CO, pero en pequeñas cantidades mejora ligeramente la conversión y la producción de hidrocarburos a C3+ 5ª La serie a largo plazo confirmó la robustez de catalizador basado en carburo de hierro, en el que se empleó como precursor oxalato de hierro comercial, en cuanto al mantenimiento de la actividad durante el tiempo de reacción, demostrando su buen comportamiento durante las pruebas. 6ª El mayor valor de productividad obtenido alcanzó los 0,17 g de HC líquido·gcat-1·h-1, obtenido con el oxalato comercial como precursor. 7ª Los resultados obtenidos en el gas de síntesis real contaminado con azufre confirman el buen comportamiento de los catalizadores en las peores condiciones, con ligeras diferencias entre los tipos probados. 9ª El análisis energético del proceso realizado con equipos de proceso a escala de pequeña planta piloto y sin haber tenido ninguna consideración sobre consumo energético durante su diseño, arroja unos resultados mejorables (1,87 y 0,74 kWh/g de HC). 8ª El resultado económico es orientativo sobre los costes reales del proceso, pero si permite ordenar las etapas por consumo, determinando aquellas sobre las que centrar los esfuerzos de eficiencia energética debido al mayor coste que repercuten. En el proceso propuesto, la etapa de generación, seguida de la de compresión son las dos principales etapas para optimizar. 9ª Las distribuciones de hidrocarburos obtenidos tienen valores de densidad y puntos de destilación próximos a los establecidos por la normativa, sin haber sido sometidos a procesos de refinado o mejora. 10ª La experimentación llevada a cabo con la planta de reformado de glicerina permite concluir que la planta, una vez realizadas las modificaciones, ha cumplido plenamente con las expectativas y que el sistema de ajuste de caudales ha funcionado de forma correcta. Sin embargo, también se puede concluir que la planta trabaja por debajo de su capacidad óptima, lo que penaliza la eficiencia energética y aumenta los costes del proceso. 11ª Respecto a la etapa de limpieza y depuración cumple con lo exigido, funcionando a una capacidad inferior a su máxima permitida. No obstante, su bajo consumo energético con respecto al caudal procesado apenas penaliza el consumo energético y los costes de proceso. 12ª El sistema almacenamiento ha funcionado según lo especificado. No obstante, el sistema de compresión elegido ha demostrado ser el proceso limitante de la capacidad del resto de procesos y el segundo proceso que más costes aporta a la transformación. Bibliografía [1] W. R. Emanuel, H. H. Shugart, and M. P. Stevenson, “Climatic change and the broad-scale distribution of terrestrial ecosystem complexes,” Climatic Change 1985 7:1, vol. 7, no. 1, pp. 29–43, Mar. 1985, doi: 10.1007/BF00139439. [2] P. Neirotti, A. de Marco, A. C. Cagliano, G. Mangano, and F. Scorrano, “Current trends in Smart City initiatives: Some stylised facts,” Cities, vol. 38, pp. 25–36, Jun. 2014, doi: 10.1016/J.CITIES.2013.12.010. [3] G. Scheffknecht, L. Al-Makhadmeh, U. Schnell, and J. Maier, “Oxy-fuel coal combustion—A review of the current state-of-the-art,” International Journal of Greenhouse Gas Control, vol. 5, no. SUPPL. 1, pp. S16–S35, Jul. 2011, doi: 10.1016/J.IJGGC.2011.05.020. [4] C. Song, “Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing,” Catal Today, vol. 115, no. 1–4, pp. 2–32, Jun. 2006, doi: 10.1016/J.CATTOD.2006.02.029. [5] D. Y. C. Leung, G. Caramanna, and M. M. Maroto-Valer, “An overview of current status of carbon dioxide capture and storage technologies,” Renewable and Sustainable Energy Reviews, vol. 39, pp. 426–443, Nov. 2014, doi: 10.1016/J.RSER.2014.07.093. [6] D. Leckel, “Diesel production from fischer - Tropsch: The past, the present, and new concepts,” Energy and Fuels, vol. 23, no. 5, pp. 2342–2358, May 2009, doi: 10.1021/EF900064C/ASSET/IMAGES/LARGE/EF-2009-00064C_0014.JPEG. [7] C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, “Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 1–23, Jan. 2011, doi: 10.1016/J.RSER.2010.07.014. [8] M. Aresta and A. Dibenedetto, “Utilisation of CO2 as a chemical feedstock: opportunities and challenges,” Dalton Transactions, no. 28, pp. 2975–2992, Jul. 2007, doi: 10.1039/B700658F. [9] L. Fu, Y. Cao, and Y. Bai, “Development of a comprehensive simulation model for H2-rich syngas production by air–steam gasification of biomass,” J Therm Anal Calorim, vol. 147, no. 14, pp. 8069–8075, Jul. 2022, doi: 10.1007/S10973-021-11041-5/FIGURES/11. [10] J. R. Rostrup-Nielsen, “Production of synthesis gas,” Catal Today, vol. 18, no. 4, pp. 305–324, Dec. 1993, doi: 10.1016/0920-5861(93)80059-A. [11] P. K. Gupta, V. Kumar, and S. Maity, “Renewable fuels from different carbonaceous feedstocks: a sustainable route through Fischer–Tropsch synthesis,” Journal of Chemical Technology and Biotechnology, vol. 96, no. 4, pp. 853–868, Apr. 2021, doi: 10.1002/jctb.6644. [12] P. Mondal, G. S. Dang, and M. O. Garg, “Syngas production through gasification and cleanup for downstream applications — Recent developments,” Fuel Processing Technology, vol. 92, no. 8, pp. 1395–1410, Aug. 2011, doi: 10.1016/J.FUPROC.2011.03.021. [13] S. J. Mills and IEA Clean Coal Centre, Low quality coals - key commercial, environmental and plant considerations. [14] S. Mishra and R. K. Upadhyay, “Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters,” Mater Sci Energy Technol, vol. 4, pp. 329–340, Jan. 2021, doi: 10.1016/J.MSET.2021.08.009. [15] L. Wang, C. L. Weller, D. D. Jones, and M. A. Hanna, “Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production,” Biomass Bioenergy, vol. 32, no. 7, pp. 573–581, Jul. 2008, doi: 10.1016/J.BIOMBIOE.2007.12.007. [16] E. Sabio, A. Álvarez-Murillo, J. F. González, B. Ledesma, and S. Román, “Modelling the composition of the gas obtained by steam reforming of glycerine,” Energy Convers Manag, vol. 146, pp. 147–157, 2017, doi: 10.1016/j.enconman.2017.03.068. [17] S. Adhikari et al., “A thermodynamic analysis of hydrogen production by steam reforming of glycerol,” Int J Hydrogen Energy, vol. 32, no. 14, pp. 2875–2880, Sep. 2007, doi: 10.1016/J.IJHYDENE.2007.03.023. [18] J. M. Encinar, J. F. González, E. Sabio, A. Ramiro, and P. J. Muñoz, “Biodiesel Production from Cynara Cardunculus L. Oil,” in 7th INTERNATIONAL CHEMICAL ENGINEERING CONFERENCE CHEMPOR 98, 1998, pp. 1319–1326. [19] D. C. Rennard, J. S. Kruger, and L. D. Schmidt, “Autothermal Catalytic Partial Oxidation of Glycerol to Syngas and to Non-Equilibrium Products,” ChemSusChem, vol. 2, no. 1, pp. 89–98, Jan. 2009, doi: 10.1002/CSSC.200800200. [20] G. Wen, Y. Xu, H. Ma, Z. Xu, and Z. Tian, “Production of hydrogen by aqueous-phase reforming of glycerol,” Int J Hydrogen Energy, vol. 33, no. 22, pp. 6657–6666, Nov. 2008, doi: 10.1016/J.IJHYDENE.2008.07.072. [21] M. Martinelli, M. K. Gnanamani, S. LeViness, G. Jacobs, and W. D. Shafer, “An overview of Fischer-Tropsch Synthesis: XtL processes, catalysts and reactors,” Appl Catal A Gen, vol. 608, Nov. 2020, doi: 10.1016/j.apcata.2020.117740. [22] J. M. Seiler, C. Hohwiller, J. Imbach, and J. F. Luciani, “Technical and economical evaluation of enhanced biomass to liquid fuel processes,” Energy, vol. 35, no. 9, pp. 3587–3592, Sep. 2010, doi: 10.1016/J.ENERGY.2010.04.048. [23] T. Lepage, M. Kammoun, Q. Schmetz, and A. Richel, “Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment,” Biomass Bioenergy, vol. 144, p. 105920, Jan. 2021, doi: 10.1016/J.BIOMBIOE.2020.105920. [24] H. Kargbo, J. S. Harris, and A. N. Phan, “‘Drop-in’ fuel production from biomass: Critical review on techno-economic feasibility and sustainability,” Renewable and Sustainable Energy Reviews, vol. 135, Jan. 2021, doi: 10.1016/j.rser.2020.110168. [25] P. J. Woolcock and R. C. Brown, “A review of cleaning technologies for biomass-derived syngas,” Biomass Bioenergy, vol. 52, pp. 54–84, May 2013, doi: 10.1016/J.BIOMBIOE.2013.02.036. [26] E. Ruiz and J. M. Sánchez, “Purification and conditioning of biomass gasification gas.,” Bol. Grupo Español del Carbón, vol. 33, pp. 15–19, Sep. 2014. [27] J. C. Park, N. S. Roh, D. H. Chun, H. Jung, and J. I. Yang, “Cobalt catalyst coated metallic foam and heat-exchanger type reactor for Fischer–Tropsch synthesis,” Fuel Processing Technology, vol. 119, pp. 60–66, Mar. 2014, doi: 10.1016/J.FUPROC.2013.10.008. [28] N. Moazami, M. L. Wyszynski, K. Rahbar, A. Tsolakis, and H. Mahmoudi, “A comprehensive study of kinetics mechanism of Fischer-Tropsch synthesis over cobalt-based catalyst,” Chem Eng Sci, vol. 171, pp. 32–60, Nov. 2017, doi: 10.1016/J.CES.2017.05.022. [29] D. Y. Shin, K. S. Ha, M. J. Park, G. Kwak, Y. J. Lee, and K. W. Jun, “CFD modeling of a modular reactor for the Fischer–Tropsch synthesis: Effectiveness of a micro-scale cross-current cooling channel,” Fuel, vol. 158, pp. 826–834, Oct. 2015, doi: 10.1016/J.FUEL.2015.06.040. [30] R. Hussain, J. H. Blank, and N. O. Elbashir, “Modeling the Fixed-Bed Fischer-Tropsch Reactor in Different Reaction Media,” Computer Aided Chemical Engineering, vol. 37, pp. 143–148, Jan. 2015, doi: 10.1016/B978-0-444-63578-5.50019-0. [31] M. Feyzi, A. A. Mirzaei, and H. R. Bozorgzadeh, “Effects of preparation and operation conditions on precipitated iron nickel catalysts for Fischer-Tropsch synthesis,” Journal of Natural Gas Chemistry, vol. 19, no. 3, pp. 341–353, 2010, doi: 10.1016/S1003-9953(09)60068-2. [32] Piyapong Hunpinyo, “A comprehensive small and pilot-scale fixed-bed reactor approach for testing Fischer–Tropsch catalyst activity and performance on a BTL route,” Arabian Journal of Chemistry, vol. 10, no. 2, pp. 52806–52828, 2017, doi: https://doi.org/10.1016/j.arabjc.2013.11.004. [33] B. H. Davis, “Fischer-Tropsch synthesis: Overview of reactor development and future potentialities,” Top Catal, vol. 32, no. 3–4, pp. 143–168, Mar. 2005, doi: 10.1007/s11244-005-2886-5. [34] M. E. Dry, “The Fischer-Tropsch process - commercial Aspects,” Catal Today, vol. 6, no. 3, pp. 183–206, 1990, doi: https://doi.org/10.1016/0920-5861(90)85002-6. [35] M. E. Dry, “Practical and theoretical aspects of the catalytic Fischer-Tropsch process,” Appl Catal A Gen, vol. 138, no. 2, pp. 319–344, 1996, doi: 10.1016/0926-860X(95)00306-1. [36] J. Shen et al., “Design of a Fischer-Tropsch multi-tube reactor fitted in a container: A novel design approach for small scale applications,” J Clean Prod, vol. 362, p. 132477, Aug. 2022, doi: 10.1016/j.jclepro.2022.132477. [37] F. Fischer and H. Tropsch, “Über die Reduktion des kohlenoxyds zu Methan am Eisenkontakt under Druck.,” Brennstoff-Chem , pp. 7–97, 1926, Accessed: Sep. 16, 2022. [Online]. Available: http://www.fischer-tropsch.org/ [38] H. Schulz, “Short history and present trends of Fischer–Tropsch synthesis,” Appl Catal A Gen, vol. 186, no. 1–2, pp. 3–12, Oct. 1999, doi: 10.1016/S0926-860X(99)00160-X. [39] A. A. Adesina, “Hydrocarbon synthesis via Fischer-Tropsch reaction: travails and triumphs,” Appl Catal A Gen, vol. 138, pp. 345–367, Nov. 1996. [40] X. Wang and M. Economides, Advanced Natural Gas Engineering. 2 Greenway Plaza, Suite 1020, Houston, TX 77046: Gulf Publixhing Company, 2009. [41] S. Y. Hong et al., “A new synthesis of carbon encapsulated Fe5C2 nanoparticles for high-temperature Fischer-Tropsch synthesis,” Nanoscale, vol. 7, no. 40, pp. 16616–16620, Oct. 2015, doi: 10.1039/c5nr04546k. [42] E. de Smit and B. M. Weckhuysen, “The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour,” Chem Soc Rev, vol. 37, no. 12, pp. 2758–2781, Dec. 2008, doi: 10.1039/b805427d. [43] M. E. Dry, “The Fischer–Tropsch process: 1950–2000,” Catal Today, vol. 71, no. 3–4, pp. 227–241, Jan. 2002. [44] J. C. Park et al., “Highly activated K-doped iron carbide nanocatalysts designed by computational simulation for Fischer-Tropsch synthesis,” J Mater Chem A Mater, vol. 2, no. 35, pp. 14371–14379, Sep. 2014, doi: 10.1039/c4ta02413c. [45] A. de Klerk, “Environmentally friendly refining: Fischer–Tropsch versus crude oil,” Green Chemistry, vol. 9, no. 6, pp. 560–56, May 2007, doi: 10.1039/b614187k. [46] A. P. Steynberg, R. L. Espinoza, B. Jager, and A. C. Vosloo, “High temperature Fischer-Tropsch synthesis in commercial practice,” Appl Catal A Gen, vol. 186, pp. 41–54, 1999. [47] B. Yao et al., “Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst,” Nat Commun, vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020-20214-z. [48] K. Cheng et al., “Pore size effects in higherature Fischer-Tropsch synthesis over supported iron catalysts,” J Catal, vol. 328, pp. 139–150, Jul. 2015, doi: 10.1016/j.jcat.2014.12.007. [49] H. M. Torres Galvis and K. P. de Jong, “Catalysts for production of lower olefins from synthesis gas: A review,” ACS Catalysis, vol. 3, no. 9. pp. 2130–2149, Sep. 06, 2013. doi: 10.1021/cs4003436. [50] H. M. Torres Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. I. Dugulan, and K. P. de Jong, “Supported iron nanoparticles as catalysts for sustainable production of lower olefins,” Science (1979), vol. 335, no. 6070, pp. 835–838, Feb. 2012, doi: 10.1126/science.1215614. [51] Q. Chang et al., “Relationship between Iron Carbide Phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and Catalytic Performances of Fe/SiO2 Fischer-Tropsch Catalysts,” ACS Catal, vol. 8, no. 4, pp. 3304–3316, Apr. 2018, doi: 10.1021/acscatal.7b04085. [52] M. Claeys et al., “Oxidation of Hägg Carbide during High-Temperature Fischer-Tropsch Synthesis: Size-Dependent Thermodynamics and in Situ Observations,” ACS Catal, vol. 11, no. 22, pp. 13866–13879, Nov. 2021, doi: 10.1021/acscatal.1c03719. [53] C. G. Visconti, M. Martinelli, L. Falbo, L. Fratalocchi, and L. Lietti, “CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts,” Catal Today, vol. 277, pp. 161–170, Nov. 2016, doi: 10.1016/J.CATTOD.2016.04.010. [54] H. Mahmoudi et al., “A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation,” Biofuels Engineering, vol. 2, no. 1, pp. 11–31, Dec. 2017, doi: 10.1515/BFUEL-2017-0002. [55] S. J. Gujjar, A. v Karre, A. Kababji, and D. B. Dadyburjor, “Effect of Changing Amounts of Promoters and Base Fe Metal in a Multicomponent Catalyst Supported on Coal-Based Activated Carbon for Fischer-Tropsch Synthesis,” 2021, doi: 10.3390/reactions. [56] A. v Karre, D. B. Dadyburjor, C. L. Edwin Kugler, and C. D. Stinespring, “Addition of Zeolite ZSM-5 to an Iron-based Fischer-Tropsch Catalyst supported on Activated Carbon: Effect of Reactor Conditions,” 2011. [57] B. Liang et al., “Effect of Na Promoter on Fe-Based Catalyst for CO2 Hydrogenation to Alkenes,” ACS Sustain Chem Eng, vol. 7, no. 1, pp. 925–932, Jan. 2019, Accessed: Sep. 16, 2022. [Online]. Available: https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.8b04538 [58] B. Liu, S. Geng, J. Zheng, X. Jia, F. Jiang, and X. Liu, “Unravelling the New Roles of Na and Mn Promoter in CO2 Hydrogenation over Fe3O4-Based Catalysts for Enhanced Selectivity to Light α-Olefins,” ChemCatChem, vol. 10, no. 20, pp. 4718–4732, Oct. 2018, doi: 10.1002/CCTC.201800782. [59] A. J. Barrios et al., “Identification of efficient promoters and selectivity trends in high temperature Fischer-Tropsch synthesis over supported iron catalysts,” Appl Catal B, vol. 273, Sep. 2020, doi: 10.1016/j.apcatb.2020.119028. [60] Q. Zhang, J. Kang, and Y. Wang, “Development of Novel Catalysts for Fischer–Tropsch Synthesis: Tuning the Product Selectivity,” ChemCatChem, vol. 2, no. 9, pp. 1030–1058, Sep. 2010, doi: 10.1002/CCTC.201000071. [61] G. R. Jenness and J. R. Schmidt, “Unraveling the role of metal-support interactions in heterogeneous catalysis: Oxygenate selectivity in Fischer-Tropsch synthesis,” ACS Catal, vol. 3, no. 12, pp. 2881–2890, Dec. 2013, doi: 10.1021/CS4006277/SUPPL_FILE/CS4006277_SI_001.PDF. [62] B. Liu, W. Li, Y. Xu, Q. Lin, F. Jiang, and X. Liu, “Insight into the Intrinsic Active Site for Selective Production of Light Olefins in Cobalt-Catalyzed Fischer-Tropsch Synthesis,” ACS Catal, vol. 9, no. 8, pp. 7073–7089, Aug. 2019, doi: 10.1021/ACSCATAL.9B00352/SUPPL_FILE/CS9B00352_SI_001.PDF. [63] H. Storch, N. Golumbric, and R. B. Anderson, The Fischer-Tropsch and Related Syntheses. 1951. Accessed: Sep. 16, 2022. [Online]. Available: https://www.abebooks.com/first-edition/Fischer-Tropsch-Related-Syntheses-Including-Summary-Theoretical/22576367455/bd [64] I. Puskas and R. S. Hurlbut, “Comments about the causes of deviations from the Anderson–Schulz–Flory distribution of the Fischer–Tropsch reaction products,” Catal Today, vol. 84, no. 1–2, pp. 99–109, Aug. 2003, doi: 10.1016/S0920-5861(03)00305-5. [65] R. B. Anderson, R. A. Friedel, and H. H. Storch, “Fischer‐Tropsch Reaction Mechanism Involving Stepwise Growth of Carbon Chain,” J Chem Phys, vol. 19, no. 3, p. 313, Dec. 2004, doi: 10.1063/1.1748201. [66] R. A. Friedel and R. B. Anderson, “Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C5—C8 Paraffin Isomers from Cobalt Catalyst,” J Am Chem Soc, vol. 72, no. 3, pp. 1212–1215, Mar. 1950, doi: 10.1021/JA01159A039/ASSET/JA01159A039.FP.PNG_V03. [67] X. Liu, A. Hamasaki, T. Honma, and M. Tokunaga, “Anti-ASF distribution in Fischer-Tropsch synthesis over unsupported cobalt catalysts in a batch slurry phase reactor,” Catal Today, vol. 175, no. 1, pp. 494–503, Oct. 2011, doi: 10.1016/j.cattod.2011.03.030. [68] A. Klerk, “Fischer–Tropsch refining: technology selection to match molecules,” Green Chemistry, vol. 10, no. 12, pp. 1237–1344, 2008, doi: 10.1039/b813233j. [69] E. Kikuchi, H. Itoh, M. Miyazaki, and Y. Morita, “Liquid Phase Hydrogenation of Carbon Monoxide (Part 1) Selectivity for Formation of Oxygenates on Iron Catalysts,” Journal of The Japan Petroleum Institute, vol. 29, no. 4, pp. 317–323, Jul. 1986, doi: 10.1627/JPI1958.29.317. [70] M. Marchese, M. Gandiglio, and A. Lanzini, “A Circular Approach for Making Fischer–Tropsch E-fuels and E-chemicals From Biogas Plants in Europe,” Front Energy Res, vol. 9, Dec. 2021, doi: 10.3389/fenrg.2021.773717. [71] E. Boymans, T. Nijbacker, D. Slort, S. Grootjes, and B. Vreugdenhil, “Jet Fuel Synthesis from Syngas Using Bifunctional Cobalt-Based Catalysts,” Catalysts 2022, Vol. 12, Page 288, vol. 12, no. 3, p. 288, Mar. 2022, doi: 10.3390/CATAL12030288. [72] A. Gonzalez-Garay et al., “Unravelling the potential of sustainable aviation fuels to decarbonise the aviation sector,” Energy Environ Sci, vol. 15, no. 8, pp. 3291–3309, Aug. 2022, doi: 10.1039/D1EE03437E. [73] M. Shahabuddin, M. T. Alam, B. B. Krishna, T. Bhaskar, and G. Perkins, “A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes,” Bioresour Technol, vol. 312, p. 123596, Sep. 2020, doi: 10.1016/J.BIORTECH.2020.123596. [74] U.S. Departament of Energy., “Sustainable Aviation Fuel: Review of Technical Pathways Report,” 2021. [75] EASA, “European Aviation Environmental Report 2019,” 2019. doi: 10.2822/309946. [76] R. D. White, “Refining and blending of aviation turbine fuels,” Drug Chem Toxicol, vol. 22, no. 1, pp. 143–153, 1999, doi: 10.3109/01480549909029728. [77] ASTM, “ASTM D1655 − 22 Standard Specification for Aviation Turbine Fuels”, doi: 10.1520/D1655-20D. [78] M. A. Rumizen, “Qualification of Alternative Jet Fuels,” Front Energy Res, vol. 9, Nov. 2021, doi: 10.3389/FENRG.2021.760713. [79] G. Liu, B. Yan, and G. Chen, “Technical review on jet fuel production,” Renewable and Sustainable Energy Reviews, vol. 25, pp. 59–70, Sep. 2013, doi: 10.1016/J.RSER.2013.03.025. [80] H. Boerrigter, H. P. Calis, D. J. Slort, H. Bodenstaff, and H. J. Veringa, “Gas Cleaning for Integrated Biomass Gasification (BG) and Fischer-Tropsch (FT) Systems Experimental demonstration of two BG-FT systems (‘Proof-of-Principle’),” 2004. Accessed: Sep. 05, 2022. [Online]. Available: http://resolver.tudelft.nl/uuid:9146bdd9-35ac-4fac-bc15-54ee90bdbd1d [81] X. Duan et al., “Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer–Tropsch synthesis of lower olefins,” Journal of Energy Chemistry, vol. 25, no. 2, pp. 311–317, Mar. 2016, doi: 10.1016/J.JECHEM.2016.01.003. [82] Y. H. Choi et al., “Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels,” Appl Catal B, vol. 202, pp. 605–610, Mar. 2017, doi: 10.1016/J.APCATB.2016.09.072. [83] D. B. Bukur, L. Nowicki, R. K. Manne, and X. S. Lang, “Activation Studies with a Precipitated Iron Catalyst for Fischer-Tropsch Synthesis: II. Reaction Studies,” J Catal, vol. 155, no. 2, pp. 366–375, Sep. 1995, doi: 10.1006/JCAT.1995.1218. [84] T. Herranz, S. Rojas, F. J. Pérez-Alonso, M. Ojeda, P. Terreros, and J. L. G. Fierro, “Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas,” J Catal, vol. 243, no. 1, pp. 199–211, Oct. 2006, doi: 10.1016/J.JCAT.2006.07.012. [85] S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” J Am Chem Soc, vol. 60, pp. 309–319, 1938. [86] S. Iqbal, G. Maaz Mufti, M. B. Khan, S. Hussain Ansari, and S. Naveed, “Advance Instrumentation and Control of FTS-GTL Facility by Means of PLC-SCADA System,” International Conference on Energy Systems and Policies (ICESP), Nov. 2014, doi: 10.1109/ICESP.2014.7346991. [87] J. M. Nhut, L. Pesant, N. Keller, C. Pham-Huu, and M. J. Ledoux, “Pd/SiC exhaust gas catalyst for heavy-duty engines: improvement of catalytic performances by controlling the location of the active phase on the support,” Topics in Catalysis 2004 30:1, vol. 30, no. 1, pp. 353–358, 2004, doi: 10.1023/B:TOCA.0000029774.03973.A6. [88] Q. Gan et al., “A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica,” Biomaterials, vol. 32, no. 7, pp. 1932–1942, Mar. 2011, doi: 10.1016/J.BIOMATERIALS.2010.11.020. [89] X. Yang et al., “Preparation of Iron Carbides Formed by Iron Oxalate Carburization for Fischer-Tropsch Synthesis”, doi: 10.3390/catal9040347. [90] C. Yang, H. Zhao, Y. Hou, and D. Ma, “Fe 5C 2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis,” J Am Chem Soc, vol. 134, no. 38, pp. 15814–15821, Sep. 2012, doi: 10.1021/JA305048P/SUPPL_FILE/JA305048P_SI_001.PDF. [91] C. G. Visconti et al., “CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst,” Appl Catal B, vol. 200, pp. 530–542, Jan. 2017, doi: 10.1016/J.APCATB.2016.07.047. [92] S. Li, A. Li, S. Krishnamoorthy, and E. Iglesia, “Effects of Zn, Cu, and K Promoters on the Structure and on the Reduction, Carburization, and Catalytic Behavior of Iron-Based Fischer–Tropsch Synthesis Catalysts,” Catalysis Letters 2001 77:4, vol. 77, no. 4, pp. 197–205, 2001, doi: 10.1023/A:1013284217689. [93] H. Wan, B. Wu, C. Zhang, H. Xiang, and Y. Li, “Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer–Tropsch synthesis,” J Mol Catal A Chem, vol. 283, no. 1–2, pp. 33–42, Mar. 2008, doi: 10.1016/J.MOLCATA.2007.12.013. [94] J. Blanchard and N. Abatzoglou, “Nano-iron carbide synthesized by plasma as catalyst for Fischer–Tropsch synthesis in slurry reactors: The role of iron loading and K, Cu promoters,” Catal Today, vol. 237, pp. 150–156, Nov. 2014, doi: 10.1016/J.CATTOD.2013.12.027. [95] H. Wan, B. Wu, C. Zhang, H. Xiang, and Y. Li, “Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer–Tropsch synthesis,” J Mol Catal A Chem, vol. 283, no. 1–2, pp. 33–42, Mar. 2008, doi: 10.1016/J.MOLCATA.2007.12.013. [96] D. B. Bukur, D. Mukesh, and S. A. Patel, “Promoter Effects on Precipitated Iron Catalysts for Fischer-Tropsch Synthesis,” Ind Eng Chem Res, vol. 29, no. 2, pp. 194–204, 1990, doi: 10.1021/IE00098A008/ASSET/IE00098A008.FP.PNG_V03. [97] J. C. Park et al., “Highly activated K-doped iron carbide nanocatalysts designed by computational simulation for Fischer–Tropsch synthesis,” J Mater Chem A Mater, vol. 2, no. 35, pp. 14371–14379, Aug. 2014, doi: 10.1039/C4TA02413C. [98] J. Wang et al., “Effect of the promoters on oxidation behavior of Fe-based Fischer-Tropsch catalyst: Deciphering the role of H2O,” Journal of Fuel Chemistry and Technology, vol. 48, no. 1, pp. 63–74, Jan. 2020, doi: 10.1016/S1872-5813(20)30004-9. [99] H. Wan, B. Wu, C. Zhang, H. Xiang, and Y. Li, “Promotional effects of Cu and K on precipitated iron-based catalysts for Fischer–Tropsch synthesis,” J Mol Catal A Chem, vol. 283, no. 1–2, pp. 33–42, Mar. 2008, doi: 10.1016/J.MOLCATA.2007.12.013. [100] K. Keyvanloo, J. B. Horton, W. C. Hecker, and M. D. Argyle, “Effects of preparation variables on an alumina-supported FeCuK Fischer-Tropsch catalyst,” Catal Sci Technol, vol. 4, no. 12, pp. 4289–4300, Dec. 2014, doi: 10.1039/c4cy00510d. [101] W. D. Shafer et al., “Fischer–Tropsch: Product Selectivity–The Fingerprint of Synthetic Fuels,” Catalysts 2019, Vol. 9, Page 259, vol. 9, no. 3, p. 259, Mar. 2019, doi: 10.3390/CATAL9030259. [102] H.-J. Lee, “Optimization of Fischer-Tropsch Plant,” Thesis, Uneversity of Manchester, 2010. [103] A. Meurer and J. Kern, “Fischer–tropsch synthesis as the key for decentralized sustainable kerosene production,” Energies (Basel), vol. 14, no. 7, Apr. 2021, doi: 10.3390/en14071836. [104] L. Kumar Singh and G. Chaudhary, Eds., “Advances in Biofeedstocks and Biofuels, Liquid Biofuel Production,” vol. Volume 3, Beberly, MA 01915, USA: John Wiley & Sons, 2019. [105] Y. Yao, X. Liu, D. Hildebrandt, and D. Glasser, “Fischer-Tropsch synthesis using H 2/CO/CO 2 syngas mixtures over an iron catalyst,” Ind Eng Chem Res, vol. 50, no. 19, pp. 11002–11012, Oct. 2011, doi: 10.1021/ie200690y. [106] AENOR, “UNE-EN 15199-2 Determinación de la distribución del rango de ebullición por el método de cromatografía gaseosa”. [107] V. P. Santos et al., “Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts,” Nature Communications 2015 6:1, vol. 6, no. 1, pp. 1–8, Mar. 2015, doi: 10.1038/ncomms7451. [108] V. v. Ordomsky, B. Legras, K. Cheng, S. Paul, and A. Y. Khodakov, “The role of carbon atoms of supported iron carbides in Fischer–Tropsch synthesis,” Catal Sci Technol, vol. 5, no. 3, pp. 1433–1437, Feb. 2015, doi: 10.1039/C4CY01631A. [109] A. H. Nasser et al., “Mn–Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor,” RSC Adv, vol. 8, no. 27, pp. 14854–14863, Apr. 2018, doi: 10.1039/C8RA02193G. [110] Y. H. Choi et al., “Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels,” Appl Catal B, vol. 202, pp. 605–610, Mar. 2017, doi: 10.1016/J.APCATB.2016.09.072. [111] R. W. Dorner, D. R. Hardy, F. W. Williams, and H. D. Willauer, “K and Mn doped iron-based CO2 hydrogenation catalysts: Detection of KAlH4 as part of the catalyst’s active phase,” Appl Catal A Gen, vol. 373, no. 1–2, pp. 112–121, Jan. 2010, doi: 10.1016/J.APCATA.2009.11.005. [112] F. Jiang, B. Liu, S. Geng, Y. Xu, and X. Liu, “Hydrogenation of CO2 into hydrocarbons: Enhanced catalytic activity over Fe-based Fischer-Tropsch catalysts,” Catal Sci Technol, vol. 8, no. 16, pp. 4097–4107, 2018, doi: 10.1039/C8CY00850G.