Metaheuristics for the optimization of Terrestrial LiDAR set-up
- 1 Department of Computer Science, University of Jaén, Spain
- 2 Department of Software Engineering, University of Granada, Spain
ISSN: 0926-5805
Año de publicación: 2023
Volumen: 146
Páginas: 104675
Tipo: Artículo
Otras publicaciones en: Automation in Construction
Resumen
3D point clouds have a significant impact on a wide range of applications, although their acquisition is frequently conditioned by the occlusion of the objects in the scene. To address this problem, this paper describes an approach for optimizing LiDAR (Light Detection and Ranging) surveys using metaheuristics such as local searches and genetic algorithms. The method generates a set of optimal scanning locations to densely cover the real-world environment represented through 3D synthetic models. Compared to previous research, this paper handles 3D occlusion by varying the height of the sensor. Also, previously used metrics are compressed into three functions to avoid multi-objective optimization. Regarding performance, a LiDAR scanning solution based on GPU (Graphics Processing Unit) hardware is used. Several tests were conducted to show that the combination of local searches and genetic algorithms generates a reduced set of locations capable of optimizing the scanning of buildings.
Referencias bibliográficas
- Pandžić, (2017), Autom. Constr., 78, pp. 13, 10.1016/j.autcon.2017.01.003
- Shariq, (2020), Renew. Sustain. Energy Rev., 130, 10.1016/j.rser.2020.109979
- Guisado-Pintado, (2019), Geomorphology, 328, pp. 157, 10.1016/j.geomorph.2018.12.013
- Mitasova, (2010), J. Coast. Conserv., 14, pp. 161, 10.1007/s11852-010-0088-1
- Kuutti, (2021), IEEE Trans. Intell. Transp. Syst., 22, pp. 712, 10.1109/TITS.2019.2962338
- Banfi, (2019), ISPRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W11, pp. 141, 10.5194/isprs-archives-XLII-2-W11-141-2019
- Ham, (2020), Sustainability, 12, pp. 8108, 10.3390/su12198108
- Andriasyan, (2020), Remote Sens., 12, pp. 1094, 10.3390/rs12071094
- Poux, (2019), pp. 127
- Warchoł, (2019), ISPRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1/W2, pp. 61, 10.5194/isprs-archives-XLII-1-W2-61-2019
- Soudarissanane, (2012), ISPRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXVIII-5/W12, pp. 127, 10.5194/isprsarchives-XXXVIII-5-W12-127-2011
- Macher, (2017), Appl. Sci., 7, pp. 1030, 10.3390/app7101030
- Pătrăucean, (2015), Adv. Eng. Inform., 29, pp. 162, 10.1016/j.aei.2015.01.001
- Rocha, (2020), Heritage, 3, pp. 47, 10.3390/heritage3010004
- Moyano, (2020), J. Cult. Herit., 45, pp. 303, 10.1016/j.culher.2020.03.010
- Gollob, (2020), Data, 5, pp. 103, 10.3390/data5040103
- Rodríguez-Gonzálvez, (2017), Remote Sens., 9, pp. 189, 10.3390/rs9030189
- Bienert, (2018), Forests, 9, pp. 395, 10.3390/f9070395
- Kim, (2020), IEEE Trans. Intell. Transp. Syst., 21, pp. 2139, 10.1109/TITS.2019.2915087
- López, (2021)
- Li, (2021), Expert Syst. Appl., 183, 10.1016/j.eswa.2021.115310
- Mohamadi, (2021), Expert Syst. Appl., 184, 10.1016/j.eswa.2021.115529
- Roostapour, (2022), Artificial Intelligence, 302, 10.1016/j.artint.2021.103597
- Potthast, (2014), J. Vis. Commun. Image Represent., 25, pp. 148, 10.1016/j.jvcir.2013.07.006
- Giorgini, (2019), IEEE Geosci. Remote Sens. Lett., 16, pp. 1452, 10.1109/LGRS.2019.2899681
- Aryan, (2021), Autom. Constr., 125, 10.1016/j.autcon.2021.103551
- Wakisaka, (2019), ISARC Proc., pp. 91
- Li, (2022), Autom. Constr., 140, 10.1016/j.autcon.2022.104363
- Starek, (2020), Int. J. Remote Sens., 41, pp. 6409, 10.1080/01431161.2020.1752952
- Zhang, (2016), Adv. Eng. Inform., 30, pp. 218, 10.1016/j.aei.2016.03.004
- Heidari Mozaffar, (2016), Photogramm. Rec., 31, pp. 374, 10.1111/phor.12162
- Latimer, (2004), Vol. 5, pp. 4454
- Chen, (2018), Opt. Commun., 413, pp. 103, 10.1016/j.optcom.2017.12.045
- Jia, (2017), Vol. IV-2-W4, pp. 75
- Ahn, (2016), Multimedia Tools Appl., 75, pp. 3655, 10.1007/s11042-015-2473-0
- Pehlivanoglu, (2021), Appl. Soft Comput., 112, 10.1016/j.asoc.2021.107796
- Roberge, (2021), Sensors, 21, pp. 6851, 10.3390/s21206851
- Islambouli, (2019), IEEE Access, 7, pp. 172860, 10.1109/ACCESS.2019.2956150
- Pereira, (2016), Robot. Auton. Syst., 83, pp. 326, 10.1016/j.robot.2016.05.010
- Na, (2014), pp. 1058
- Veronese, (2018), pp. 1476
- Wang, (2018), Energies, 11, pp. 3526, 10.3390/en11123526
- T. Voegtle, I. Schwab, T. Landes, Influences of different materials on the measurement of a Terrestrial Laser Scanner (TLS), in: Proc. of the XXI Congress, the International Society for Photogrammetry and Remote Sensing, ISPRS2008, Vol. 37, 2008.
- Lee, (2020), ISPRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2020, pp. 39, 10.5194/isprs-archives-XLIII-B1-2020-39-2020
- Méndez, (2013), Biosyst. Eng., 115, pp. 7, 10.1016/j.biosystemseng.2013.02.003
- Iqbal, (2020), Robotics, 9, pp. 46, 10.3390/robotics9020046
- Westling, (2020)
- Brown, (2005), pp. 342
- Lohani, (2007), Int. Arch. Photogramm. Remote Sens., 52
- Hovi, (2014), Remote Sens. Environ., 140, pp. 665, 10.1016/j.rse.2013.10.003
- Gastellu-Etchegorry, (2016), Remote Sens. Environ., 184, pp. 418, 10.1016/j.rse.2016.07.010
- Yin, (2016), Remote Sens. Environ., 184, pp. 454, 10.1016/j.rse.2016.07.009
- Yun, (2019), Agricult. Forest Meteorol., 276–277
- Chen, (2020), IEEE Trans. Geosci. Remote Sens., pp. 1
- Zohdi, (2020), Comput. Methods Appl. Mech. Engrg., 359, 10.1016/j.cma.2019.03.056
- Peinecke, (2008), pp. 4.D.4
- Meister, (2018), IEEE Trans. Vis. Comput. Graph., 24, pp. 1345, 10.1109/TVCG.2017.2669983
- Marques, (2019), Comput. Graph. Forum, 38, pp. 59, 10.1111/cgf.13392
- Kocis, (1997), ACM Trans. Math. Software, 23, pp. 266, 10.1145/264029.264064
- Burkardt, (2010)
- Wiȩckowski, (2020), pp. 365
- Vannucci, (2020), pp. 211