High Precision Geomatic Tools for Improving Harvest of Olive Grove in Advance

  1. Ramos, Ma Isabel 1
  2. Jurado, Juan M. 2
  3. Cárdenas, José L. 2
  4. Enríquez, Carlos 1
  5. Ortega, Lidia 3
  6. Martínez, Ma Lourdes 4
  7. Feito, Francisco R. 3
  8. Cubillas, Juan J. 2
  1. 1 Department Ingeniería Cartográfica, Geodésica y Fotogrametría, Universidad de Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
  2. 2 Grupo de Investigación Informática Gráfica y Geomática, Universidad de Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
  3. 3 Department Informática, Universidad de Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
  4. 4 Department Ingeniería química ambiental y de los materiales, Universidad de Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
Libro:
INCREaSE 2019

ISBN: 9783030309374 9783030309381

Año de publicación: 2019

Páginas: 691-700

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-030-30938-1_53 GOOGLE SCHOLAR lock_openAcceso abierto editor

Objetivos de desarrollo sostenible

Resumen

The work presented has the scope of the analysis of environmental sustainability, and more specifically, in agriculture. Agriculture is a fundamental sector in the Spanish economy and even more in the region of Andalusia, being the main exponent the cultivation of olive grove. However, despite the mechanization achieved in most of the cultivation processes of this crop, as well as the permanent progress related to the application of chemical products (fertilizers, pesticides, etc.) there is an important digital divide between the farmer and his farm. In this sense, aspects such as having a rapid and detailed monitoring of the state of the farm such as humidity data, health status of each plant, soil erosion, anticipated production data of each plant…also evolution that may has as a function of climate parameters and in short or long term the type of tillage. All these are factors to which current Geomatics tools can provide coverage with adequate accuracy. Thus, the development of technologies that allow the detailed monitoring over time of an olive grove, both at the level of the plot and individual olive, represents a very important advance in agricultural practice. The objective of this work is to analyze how geomatic tools can help to approach these items. In this sense analysis of series of physical and environmental parameters that must be integrated into a geolocated database. Then, the main advance of this work is by the use of spatial data mining possible to analyze the behavior of the farm in advance.

Referencias bibliográficas

  • Pierce, F.J., Nowak, P.: Aspects of precision agriculture. In: Advances in Agronomy, vol. 67, pp. 1–85. Elsevier (1999)
  • Pedersen, S.M., Lind, K.: Precision agriculture from mapping to site specific application. In: Pedersen, S., Lind, K. (eds.) Precision Agriculture: Technology and Economic Perspectives, pp. 1–20. Springer, Cham (2017)
  • Pádua, L., Vanko, J., Hruška, J., Adão, T., Sousa, J.J., Peres, E., Morais, R.: UAS, sensors, and data processing in agroforestry: a review towards practical applications. Int. J. Remote Sens. 38(8–10), 2349–2391 (2017)
  • Álamo, S., Ramos, M., Feito, F., Cañas, J.: Precision techniques for improving the management of the olive groves of southern spain. Span. J. Agric. Res. 10(3), 583–595 (2012)
  • Zhang, Q.: Precision Agriculture Technology for Crop Farming. CRC Press, Boca Raton (2015)
  • Patanè, G., Spagnuolo, M.: Heterogeneous Spatial Data: Fusion, Modeling, and Analysis for GIS Applications. Synthesis Lectures on Visual Computing: Computer Graphics, Animation, Computational Photography, and Imaging, vol. 8, no. 2, pp. 1–155 (2016)
  • Pádua, L., Hruška, J., Bessa, J., Adão, T., Martins, L.M., Gonçalves, J.A., Peres, E., Sousa, A.M., Castro, J.P., Sousa, J.J.: Multi-temporal analysis of forestry and coastal environments using UASs. Remote Sens. 10(1), 24 (2017)
  • Ramos, M.I., Cubillas, J.J., Feito, F.R., Gil, A.: Software for detecting 3D movements: the case of olive tree displacements in an olive grove located on sloping land. Comput. Geosci. 42, 143–151 (2012)
  • Jurado, J., Graciano, A., Ortega, L., Feito, F.: Web-based GIS application for real-time interaction of underground infrastructure through virtual reality. In: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 97. ACM (2017)
  • Fawcett, D., Verhoef, W., Schläpfer, D., Schneider, F., Schaepman, M., Damm, A.: Advancing retrievals of surface reflectance and vegetation indices over forest ecosystems by combining imaging spectroscopy, digital object models, and 3D canopy modelling. Remote Sens. Environ. 204, 583–595 (2018)
  • Sandmann, M., Grosch, R., Graefe, J.: The use of features from fluorescence, thermography, and NDVI imaging to detect biotic stress in lettuce. Plant Dis. 102, 1101–1107 (2018). PDIS–10
  • Casagrande, G., Sik, A., Szabó, G.: Small Flying Drones: Applications for Geographic Observation. Springer, Cham (2017)
  • Cubillas, J.J., Feito, F.R., Ramos, M.I., Arias, J., Parra, A., Ureña, T.: Using geographic information systems to improve the accuracy of data mining models to predict the flow of patients to the health centers. In: MIE, p. 954 (2015)