Nanopartículas Magnéticas en el Diagnóstico y Tratamiento del Cáncer

  1. Doello, Kevin 1
  2. Cabeza, Laura 1
  3. Ortiz, Raul 2
  4. Arias, Jose Luis 1
  5. Melguizo, Consolación 1
  6. Prados, Jose 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  2. 2 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

Revista:
Actualidad médica

ISSN: 0365-7965

Año de publicación: 2015

Tomo: 100

Número: 796

Páginas: 139-145

Tipo: Artículo

DOI: 10.15568/AM.2015.796.RE01 DIALNET GOOGLE SCHOLAR lock_openDIGIBUG editor

Otras publicaciones en: Actualidad médica

Objetivos de desarrollo sostenible

Resumen

Los avances en el campo de la nanotecnología incluyen el desarrollo de nuevas nanopartículas que están siendo usadas en el en el campo de la oncología, no sólo como nuevos vehiculizadores de drogas capaces de dirigirlas a lugares específicos al mismo tiempo que disminuyen sus efectos sistémicos, sino como mediadores para generar calor localizado (hipertermia) como terapia antitumoral y para la localización y visualización de este tipo de patología. En este contexto, las nanopartículas que incorporan núcleos magnéticos confiriéndoles propiedades paramagnéticas están cobrando gran relevancia en el campo del diagnóstico tumoral y también en el del tratamiento ya sea sólo para aplicar la hipertermia o para combinarla con fenómenos de direccionamiento de drogas citotóxicas mediante la adición en la superficie de la nanopartícula de moléculas que reconocen algún tipo de biomarcador de cáncer (“targeting activo”). El principal objetivo de esta revisión es presentar los avances más relevantes en el desarrollo de nanoplataformas que incorporan núcleos magnéticos y que representan una nueva estrategia para el tratamiento y/o diagnóstico del cáncer (teragnosis) indicando los principales ensayos in vitro e in vivo y especialmente los ensayos clínicos más significativos que tiene como base esta nueva concepción terapéutica dentro del campo de la oncología.

Referencias bibliográficas

  • Abbasi AZ, Prasad P, Cai P, et al. Manganese oxide and docetaxel co-loaded fluorescent polymer nanoparticles for dual modal imaging and chemotherapy of breast cancer. J Control Release Off J Control Release Soc. 2015;209:186- 96.
  • Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7:144.
  • Attaluri A, Kandala SK, Wabler M, et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. Int J Hyperth Off J Eur Soc Hyperthermic Oncol North Am Hyperth Group. 2015;1-16.
  • Bray F, Ren J-S, Masuyer E, Ferlay J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer J Int Cancer. 2013;132:1133-45.
  • Chen Y, Wang X, Liu T, et al. Highly effective antiangiogenesis via magnetic mesoporous silica-based siRNA vehicle targeting the VEGF gene for orthotopic ovarian cancer therapy. Int J Nanomedicine. 2015;10:2579-94.
  • Chiang C-S, Tseng Y-H, Liao B-J, Chen SY. Magnetically Targeted Nanocapsules for PAA-Cisplatin-Conjugated Cores in PVA/SPIO Shells via Surfactant-Free Emulsion for Reduced Nephrotoxicity and Enhanced Lung Cancer Therapy. Adv Healthc Mater. 2015;4:1066-75.
  • Clares B, Biedma-Ortiz RA, Sáez-Fernández E, et al. Nanoengineering of 5-fluorouracil-loaded magnetoliposomes for combined hyperthermia and chemotherapy against colon cancer. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Für Pharm Verfahrenstechnik EV. 2013;85:329-38.
  • Ferlay J, Soerjomataram I, Ervik M, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013 [citado 25 de mayo. 2015] http://globocan.iarc.fr.
  • Huang X, Yi C, Fan Y, et al. Magnetic Fe3 O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual targeting therapy. Mater Sci Eng C Mater Biol Appl. 2014;42:325-32.
  • Jaetao JE, Butler KS, Adolphi NL, et al. Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles. Cancer Res. 2009;69:8310-6.
  • Kaluzova M, Bouras A, Machaidze R, Hadjipanayis CG. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget. 2015;6:8788-806.
  • Li Y-J, Dong M, Kong F-M, Zhou J-P. Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics. Int J Pharm. 2015;489:83-90.
  • Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015.
  • Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem. 2010;21:797-802.
  • Mannucci S, Ghin L, Conti G, et al. Magnetic nanoparticles from Magnetospirillum gryphiswaldense increase the efficacy of thermotherapy in a model of colon carcinoma. PloS One. 2014;9:e108959.
  • Mohammad F, Yusof NA. Doxorubicin-loaded magnetic gold nanoshells for a combination therapy of hyperthermia and drug delivery. J Colloid Interface Sci. 2014;434:89-97.
  • Nejati-Koshki K, Mesgari M, Ebrahimi E, et al. Synthesis and in vitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA-PEG6000 copolymers in treatment of lung cancer. J Microencapsul. 2014;31:815-23.
  • Neuwelt EA, Várallyay CG, Manninger S, et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery. 2007;60:601-11; discussion 611-2.
  • Petryk AA, Giustini AJ, Gottesman RE, Trembly BS, Hoopes PJ. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model. Int J Hyperth Off J Eur Soc Hyperthermic Oncol North Am Hyperth Group. 2013;29:819-27.
  • Schmid G. Nanoparticles: From Theory to Application. WileyVCH Verlag GmbH & Co.:Germany; 2010.
  • Singh A, Sahoo SK. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today. 2014;19:474-81.
  • Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60:1252- 65.
  • Sun J, Teng Z-G, Tian Y, et al. Targeted fluorescent magnetic nanoparticles for imaging of human breast cancer. Int J Clin Exp Med. 2014;7:4747-58.
  • Wang L, An Y, Yuan C, et al. GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and doubletargeted thermochemotherapy of pancreatic cancer cells. Int J Nanomedicine. 2015;10:2507-19.
  • Wang P, Qu Y, Li C, et al. Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer. Int J Nanomedicine. 2015;10:749-63.
  • Wang Q, Lv L, Ling Z, et al. Long-circulating iodinated albumin-gadolinium nanoparticles as enhanced magnetic resonance and computed tomography imaging probes for osteosarcoma visualization. Anal Chem. 2015;87:4299-304.
  • Wang S, Zhang Q, Luo XF, et al. Magnetic graphenebased nanotheranostic agent for dual-modality mapping guided photothermal therapy in regional lymph nodal metastasis of pancreatic cancer. Biomaterials. noviembre de 2014;35:9473-83.
  • Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant Imaging Med Surg. 2011;1:35-40.
  • Widder KJ, Senyei AE, Ranney DF. Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv Pharmacol Chemother. 1979;16:213-71.
  • Yalçin S, Erkan M, Ünsoy G, Parsian M, Kleeff J, Gündüz U. Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines. Biomed Pharmacother Bioméd Pharmacothérapie. 2014;68:737-43.
  • Yancy AD, Olzinski AR, Hu TC-C, et al. Differential uptake of ferumoxtran-10 and ferumoxytol, ultrasmall superparamagnetic iron oxide contrast agents in rabbit: critical determinants of atherosclerotic plaque labeling. J Magn Reson Imaging JMRI. 2005;21:432-42.
  • Zhang G, Lai BB, Zhou YY, et al. Fe3O4 nanoparticles with daunorubicin induce apoptosis through caspase 8-PARP pathway and inhibit K562 leukemia cell-induced tumor growth in vivo. Nanomedicine Nanotechnol Biol Med. 2011;7:595-603.
  • Zhu Y, Sun Y, Chen Y, et al. In Vivo Molecular MRI Imaging of Prostate Cancer by Targeting PSMA with PolypeptideLabeled Superparamagnetic Iron Oxide Nanoparticles. Int J Mol Sci. 2015;16:9573-87.