Algoritmos de procesado de señal basados en Non-negative Matrix Factorization aplicados a la separación, detección y clasificación de sibilancias en señales de audio respiratorias monocanal
- Pedro Vera Candeas Directeur/trice
- Francisco Jesús Cañadas Quesada Co-directeur
Université de défendre: Universidad de Jaén
Fecha de defensa: 24 mars 2021
- Roberto Gil Pita President
- Julio Jose Carabias Orti Secrétaire
- Máximo Cobos Serrano Rapporteur
Type: Thèses
Résumé
La auscultación es el primer examen clínico que un médico lleva a cabo para evaluar el estado del sistema respiratorio, debido a que es un método no invasivo, de bajo coste, fácil de realizar y seguro para el paciente. Sin embargo, el diagnóstico que se deriva de la auscultación sigue siendo un diagnóstico subjetivo que se encuentra condicionado a la habilidad, experiencia y entrenamiento de cada médico en la escucha e interpretación de las señales de audio respiratorias. En consecuencia, se producen un alto porcentaje de diagnósticos erróneos que ponen en riesgo la salud de los pacientes e incrementan el coste asociado a los centros de salud. Esta Tesis propone nuevos métodos basados en Non-negative Matrix Factorization aplicados a la separación, detección y clasificación de sonidos sibilantes para proporcionar una vía de información complementaria al médico que ayude a mejorar la fiabilidad del diagnóstico emitido por el especialista.