Publicaciones en colaboración con investigadores/as de Universidade de Santiago de Compostela (39)

2024

  1. ASYMPTOTIC FUZZY CONTRACTIVE MAPPINGS IN FUZZY METRIC SPACES

    Kybernetika, Vol. 60, Núm. 3, pp. 394-411

2022

  1. New Lipschitz–type conditions for uniqueness of solutions of ordinary differential equations

    Journal of Mathematical Analysis and Applications, Vol. 514, Núm. 2

  2. Uniqueness criteria for ordinary differential equations with a generalized transversality condition at the initial condition

    Electronic Journal of Qualitative Theory of Differential Equations, Vol. 2022

2019

  1. Preface

    Springer Proceedings in Mathematics and Statistics

2018

  1. A Lipschitz condition along a transversal foliation implies local uniqueness for ODEs

    Electronic Journal of Qualitative Theory of Differential Equations, Vol. 2018

2017

  1. Maximum Principles for the Hill's Equation

    Elsevier Inc., pp. 1-252

2016

  1. Green's functions and spectral theory for the Hill's equation

    Applied Mathematics and Computation, Vol. 286, pp. 88-105

  2. Integration by parts and by substitution unified with applications to Green's Theorem and uniqueness for ODEs

    American Mathematical Monthly, Vol. 123, Núm. 1, pp. 40-52

2015

  1. A generalization of Montel-Tonelli's Uniqueness Theorem

    Journal of Mathematical Analysis and Applications, Vol. 429, Núm. 2, pp. 1173-1177

2013

  1. New criteria for the existence of non-trivial fixed points in cones

    Fixed Point Theory and Applications, Vol. 2013

2012

  1. Computation of Green's functions for boundary value problems with Mathematica

    Applied Mathematics and Computation, Vol. 219, Núm. 4, pp. 1919-1936

  2. On comparison principles for the periodic Hill's equation

    Journal of the London Mathematical Society, Vol. 86, Núm. 1, pp. 272-290

2010

  1. A generalized anti-maximum principle for the periodic one-dimensional p-Laplacian with sign-changing potential

    Nonlinear Analysis, Theory, Methods and Applications, Vol. 72, Núm. 7-8, pp. 3436-3446

2009

  1. Does lipschitz with respect to x imply uniqueness for the differential equation y' = f(x, y)?

    American Mathematical Monthly, Vol. 116, Núm. 1, pp. 61-66

  2. Existence of a non-zero fixed point for nondecreasing operators proved via Krasnoselskii's fixed point theorem

    Nonlinear Analysis, Theory, Methods and Applications, Vol. 71, Núm. 5-6, pp. 2114-2118