FRANCISCO
CHARTE OJEDA
TITULAR DE UNIVERSIDAD
King Abdulaziz University
Jeddah, Arabia SaudíPublikationen in Zusammenarbeit mit Forschern von King Abdulaziz University (7)
2022
-
Reducing Data Complexity Using Autoencoders With Class-Informed Loss Functions
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 44, Núm. 12, pp. 9549-9560
2019
-
REMEDIAL-HwR: Tackling multilabel imbalance through label decoupling and data resampling hybridization
Neurocomputing, Vol. 326-327, pp. 110-122
2018
-
A practical tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines
Information Fusion, Vol. 44, pp. 78-96
-
Tips, guidelines and tools for managing multi-label datasets: The mldr.datasets R package and the Cometa data repository
Neurocomputing, Vol. 289, pp. 68-85
2015
-
Addressing imbalance in multilabel classification: Measures and random resampling algorithms
Neurocomputing, Vol. 163, pp. 3-16
-
MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation
Knowledge-Based Systems, Vol. 89, pp. 385-397
2014
-
LI-MLC: A label inference methodology for addressing high dimensionality in the label space for multilabel classification
IEEE Transactions on Neural Networks and Learning Systems, Vol. 25, Núm. 10, pp. 1842-1854