Use of Edaphic Bioindicators to Mitigate Environmental Impact and Improve Agricultural Research and Training

  1. Cano-Ortiz, Ana 1
  2. Piñar Fuentes, José Carlos 2
  3. Peña-Martínez, Juan 1
  4. Cano, Eusebio 2
  1. 1 Department of Didactics of Experimental, Social and Mathematical Sciences, University Complutense of Madrid, 28040 Madrid, Spain
  2. 2 Department of Animal and Plant Biology and Ecology, Section of Botany, University of Jaen, 23071 Jaén, Spain
Revista:
Soil Systems

ISSN: 2571-8789

Año de publicación: 2024

Volumen: 8

Número: 4

Páginas: 107

Tipo: Artículo

DOI: 10.3390/SOILSYSTEMS8040107 PMID: 2571-8789/8/4/107 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Soil Systems

Resumen

The world is currently experiencing unsustainable development, which poses significant risks to global society. In response, there is a growing advocacy for sustainable development across all sectors, driven by social resilience. This shift is fostering substantial socio-environmental tensions. However, the combined power of scientific research and social education has the potential to reverse this trend. Transitioning from an unsustainable territorial model to a sustainable one is both feasible and economically profitable. This transition can be achieved through knowledge of soil bioindicators, which provide valuable information about soil nutrient content. By understanding these indicators, nutrient inputs can be tailored, reducing or eliminating pollutants such as excessive fertilizers, herbicides, and pesticides. Training experts and raising social awareness through education on new research are essential steps in this process. For decades, it has been recognized that globalization, industrialization, and population growth have driven unsustainable development, leading to degraded agroecosystems. To address this issue, government institutions are promoting sustainability through ecological agriculture and CO2 reduction, both of which can be supported by the use of soil bioindicators.

Referencias bibliográficas

  • Moore, J.W. (2015). Capitalism in the Web of Life: Ecology and the Accumulation of Capital, Society for Human Ecology.
  • Zocchi, D.M., Bondioli, C., Hamzeh Hosseini, S., Miara, M.D., Musarella, C.M., Mohammadi, D., Khan Manduzai, A., Dilawer Issa, K., Sulaiman, N., and Khatib, C. (2022). Food security beyond cereals: A cross-geographical comparative study on acorn bread heritage in the mediterranean and the middle east. Foods, 11.
  • Raskin, P. (2008). The Bridge at the Edge of the World: Capitalism, the Environment, and Crossing from Crisis to Sustainability, Yale University Press.
  • Diario Oficial de la Unión Europea (2019). Reglamento de Ejecución
  • (UE) 2019/2072 de la Comisión de 28 Noviembre, European Union.
  • Diario Oficial de la Unión Europea (2022). Reglamento de Ejecución
  • (UE) 2022/959 de la Comisión de 16 de Junio, European Union.
  • Ministerio de Agricultura, Pesca y Alimentación (2021). BOE No. 151 del 25 junio de 2021. Real Decreto 387/2021, de 1 Junio, por el que se Regula el Régimen de Certificación Fitosanitaria Oficial, Ministerio de Agricultura, Pesca y Alimentación.
  • Ministerio de Sanidad y Política Social (2010). BOE. Real Decreto 830/2010, de 25 Junio, Por el Que se Establece la Normativa Reguladora de la Capacitación Para Realizar Tratamientos con Biocidas, Ministerio de Sanidad y Política Social.
  • Pretty, J. (2002). Agriculture: Reconnecting People, Land and Nature, Routledge. [1st ed.].
  • Calabrò, F., Della, S.L., and Bevilacqua, C. (2019). Carbon sequestration by cork oak forests and raw material to built up post carbon city. New Metropolitan Perspectives. ISHT 2018. Smart Innovation, Systems and Technologies, Springer.
  • Bevilacqua, C., Calabrò, F., and Della, S.L. (2021). Cork oak forest spatial valuation toward post carbon city by CO2 sequestration. New Metropolitan Perspectives. NMP 2020. Smart Innovation, Systems and Technologies, Springer.
  • Torres, (2004), Ecosistemas, 13, pp. 2
  • Ramirez, (2001), Arch. Prev. Riesgos Labor., 4, pp. 67
  • Arroyare, (2009), Semest. Econ., 12, pp. 13
  • Castillo, (2020), Rev. Espac., 41, pp. 1
  • Lovelli, (2012), Ital. J. Agron., 7, pp. 44
  • (2004), Edafología, 11, pp. 7
  • Mota, C., Alcaraz-López, C., Iglesias, M., Martínez-Ballesta, M.C., and Carvajal, M. (2011). Investigación Sobre la Absorción de CO2 por los Cultivos Más Representativos de la Región de Murcia, CSIC.
  • Shen, G., Ru, X., Gu, Y., Liu, W., Wang, K., Li, B., Guo, Y., and Han, J. (2023). Pollution characteristics, spatial distribution, and evaluation of heavy metal(loid)s in farmland soils in a typical mountainous hilly area in China. Foods, 12.
  • Watson, R.T., and the Core Writing Team (2001). Climate change. Synthesis report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (2007). Climate change. The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
  • Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. in press.
  • Nation, (2022), Sci. Educ., 31, pp. 1567, 10.1007/s11191-022-00330-6
  • Rosas, (2018), Ecosistemas, 11, pp. 1
  • Jia, L., Wang, M., Yang, S., Zhang, F., Wang, Y., Li, P., Ma, W., Sui, S., Liu, T., and Wang, M. (2024). Analysis of agricultural carbon emissions and carbon sinks in the yellow river basin based on LMDI and tapio decoupling models. Sustainability, 16.
  • Magwegwe, E., Zivengwa, A., and Zenda, M. (2024). Adaptation and coping strategies of women to reduce food insecurity in an era of climate change: A case of Chireya District, Zimbabwe. Climate, 12.
  • Hernandez Garcia, M., Garza-Lagler, M.C., Cavazos, T., and Espejel, I. (2024). Impacts of climate change in Baja California winegrape yield. Climate, 12.
  • (2014, September 18). Real Decreto 630/2013, de 2 de Agosto, por el Que se Regula el Catálogo Español de Especies Exóticas Invasoras. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2013-8565.
  • Lozano, (2024), Ecol. Indic., 166, pp. 112279, 10.1016/j.ecolind.2024.112279
  • Pimentel, (2005), Ecol. Econ., 52, pp. 273, 10.1016/j.ecolecon.2004.10.002
  • Barney, (2013), Front. Ecol. Environ., 11, pp. 322, 10.1890/120120
  • Meyerson, (2002), Restor. Ecol., 10, pp. 703, 10.1046/j.1526-100X.2002.01051.x
  • Vila, (2011), Ecol. Lett., 14, pp. 702, 10.1111/j.1461-0248.2011.01628.x
  • Zimdahl, R.L. (2013). Fundamentals of Weed Science, Academic Press.
  • Mina, G., Peira, G., and Bonadonna, A. (2023). The potential future of insects in the european food system: A systematic review based on the consumer point of view. Foods, 12.
  • Bilen, C., El Chami, D., Mereu, V., Trabucco, A., Marras, S., and Spano, D. (2023). A Systematic Review on the Impacts of Climate Change on Coffee Agrosystems. Plants, 12.
  • Contreras, C., Pierantozzi, P., Maestri, D., Tivani, M., Searles, P., Brizuela, M., Fernández, F., Toro, A., Puertas, C., and Trentacoste, E.R. (2023). How temperatures may affect the synthesis of fatty acids during olive fruit ripening: Genes at work in the field. Plants, 12.
  • Onyenekwe, C.S., Okpara, U.T., Opata, P.I., Egyir, I.S., and Sarpong, D.B. (2022). The triple challenge: Food security and vulnerabilities of fishing and farming households in situations characterized by increasing conflict, climate shock, and environmental degradation. Land, 11.
  • Okpara, U.T., and Anugwa, I.Q. (2022). Harms to community food security resulting from eender-based violence. Land, 11.
  • Kegler, (2010), Plant Biosyst., 144, pp. 53, 10.1080/11263500903351276
  • (1996), Folia Botánica Matritensis, 16, pp. 1
  • Blasi, (2011), Plant Biosyst., 145, pp. 1, 10.1080/11263504.2011.602865
  • (1999), Itinera Geobot., 13, pp. 41
  • Pesaresi, (2017), J. Maps, 13, pp. 955, 10.1080/17445647.2017.1413017
  • Pesaresi, (2014), J. Maps, 10, pp. 538, 10.1080/17445647.2014.891472
  • Penas, (2011), Itinera Geobot., 18, pp. 425
  • Papp-Váry, Á., Pacsi, D., and Szabó, Z. (2023). Sustainable aspects of startups among generation Z—Motivations and uncertainties among students in higher educations. Sustainability, 15.
  • Li, Q., and Wu, L. (2023). Reinforce bee product quality evaluation to protect human health. Foods, 12.
  • Basaran, B., Çuvalcı, B., and Kaban, G. (2023). Dietary acrylamide exposure and cancer risk: A systematic approach to human epidemiological studies. Foods, 12.
  • Kan, D., Yao, W., Liu, X., Lyu, L., and Huang, W. (2023). Study on the coordination of new urbanization and water ecological civilization and its driving factors: Evidence from the yangtze river economic belt, China. Land, 12.
  • Meurer, S.R. (2017). Biodiversidad, Servicios Ecosistémicos y Recursos Genéticos—Posibilidades de Acceso y Distribución Justa y Equitativa, Deutsche Gesellschaft für Internationale Zusammenarbelt (GIZ) GmbH. Available online: https://absch.cbd.int/api/v2013/documents/E6FEC759-C211-9703-3C04-8CECE95F2DF2/attachments/203827/Biodiversidad%2C%20Servicios%20Ecosist%C3%A9micos%20y%20Recursos%20Gen%C3%A9ticos_Versi%C3%B3n%20Corregida_Nov2017.pdf.
  • Salvador, V., and del Egido Mazuelas, F. (2014). Metodología Para la Evaluación del Estado de Conservación de los Hábitats y Especies en la Red Natura 2000 de Castilla y León. En VV.AA. Bases Técnicas Para la Planificación de la Red Natura 2000 en Castilla y León, Dirección General del Medio Natural, Consejería de Fomento y Medio Ambiente, Junta de Castilla y León.
  • Nimmo, (2023), Conservation, 3, pp. 491, 10.3390/conservation3040032
  • Bertacchi, (2023), Plant Sociol., 60, pp. 57, 10.3897/pls2023602/04
  • (2024, September 18). Directiva 92/43/CEE. Diario Oficial de la Unión Europea. No. I. 206/1-50. Available online: https://www.boe.es/doue/1992/206/L00007-00050.pdf.
  • Bonari, (2023), Plant Sociol., 60, pp. 67, 10.3897/pls2023601/06
  • Cano-Ortiz, A., Musarella, C.M., Piñar Fuentes, J.C., Pinto Gomes, C.J., Quinto Canas, R.J., Del Rio, S., and Cano, E. (2021). Indicative value of the dominant plant species for a rapid evaluation of the nutritional of soils. Agronomy, 11.
  • Serrano, (1999), Rev. Esp. Public Health, 73, pp. 123
  • Stinca, (2023), Plant Sociol., 60, pp. 13, 10.3897/pls2023601/02
  • Anjum, (2016), Transylv. Rev., 24, pp. 2736
  • Rehman, (2016), Transylv. Rev., 7, pp. 449
  • Rehman, (2016), Transylv. Rev., 24, pp. 603
  • (2024, September 18). BOE No. 246, de 14 de Octubre de 1981, Páginas 24003 a 24034 (32 Páginas). Available online: https://www.boe.es/eli/es/o/1981/09/17/(3).
  • Leiva Gea, F. (2021). Influencia de la Bioclimatología y Técnicas de Cultivo Sobre la Diversidad Florística en Olivares Andaluces. [Ph.D. Thesis, University of Jaén].
  • Rosales Robles, E., and Sánchez de la Cruz, R. (2006). Clasificación y Uso de los Herbicidas por su Modo de Acción, SAGARP.
  • Powles, (2010), Annu. Rev. Plant Biol., 61, pp. 317, 10.1146/annurev-arplant-042809-112119
  • Torra, (2016), Phytoma, 275, pp. 22
  • Recasens, (2018), Vida Rural, 15, pp. 48
  • Recasens, (2020), Vida Rural, 2019, pp. 58
  • Kasiotis, K.M., Zafeiraki, E., Manea-Karga, E., Anastasiadou, P., and Machera, K. (2023). Pesticide residues and metabolites in greek honey and pollen: Bees and human health risk assessment. Foods, 12.