Inorganic geochemistry of Miocene sediments from the Lower Chelif Basin (NW Algeria) for approaching weathering and palaeoclimatic conditions

  1. Fatiha Hadji 1
  2. Abbas Marok 1
  3. Ali Mokhtar Samet 2
  4. Matías Reolid 3
  5. Kamar Eddine Bensefa 1
  1. 1 University of Tlemcen
  2. 2 Université Hassiba Benbouali de Chlef
    info

    Université Hassiba Benbouali de Chlef

    Chlef, Argelia

    ROR https://ror.org/04yymzm67

  3. 3 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

Journal:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Year of publication: 2024

Volume: 50

Issue: 2

Pages: 137-156

Type: Article

DOI: 10.1007/S41513-024-00236-Y DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Journal of iberian geology: an international publication of earth sciences

Sustainable development goals

Abstract

Se han llevado a cabo los análisis químicos de elementos mayoritarios y traza de los sedimentos miocenos de tres secciones estratigráfcas de la Cuenca del Bajo Chelif en el Norte de Argelia. El registro de indicadores geoquímicos demuestra que la Cuenca del Bajo Chelif ha experimentado una meteorización entre débil y moderada y los valores del Índice de Variación Composicional sugieren que estos sedimentos estaban, en general, enriquecidos en minerales petrogenéticos. Los diagramas Al2O3 vs. K2O muestran que, durante el Mioceno, el principal mineral que contiene Al3+ y K+ fue la ilita, probablemente originada por alteración de feldespato potásico. La aplicación del diagrama Al2O3 vs TiO2, como indicador de procedencia apunta a que todas las muestras caen en la línea que separa los campos de basalto y riolita/granito, lo que indica que el sedimento deriva de una fuente mixta con una composición que varía entre una fuente de rocas máfcas y félsicas. Comparado con la composición promedio de la corteza continental superior (UCC), los sedimentos miocenos muestran un fuerte empobrecimiento en SiO2, Al2O3, MnO, Na2O, K2O, Zr y Sr producido durante la meteorización así como un enriquecimiento en Cr y Cu. Los diagramas de porcentaje de variación de los distintos elementos respecto a la UCC frente al índice de alteración química (CIA) proporcionan la base para comprender la movilidad química durante la meteorización en la Cuenca del Chelif. Para el intervalo estratigráfco estudiado el Si, Al, Mn, Nay K muestran empobecimiento respecto al Ti. El Na decrece más rápidamente que el K, sugiriendo una mayor alteración de la plagioclasa sódica que del feldespato potásico. Para el Tortoniense, la movilidad de Rb y K está claramente relacionada (r = 0.72), con una menor disminución del Rb. Los valores del índice-C (C-proxy) sugieren un ambiente entre semiárido y semihúmedo durante el BurdigalienseLangiense, entre árido y semiárido para el Tortoniense y más húmedo durante el Messiniense. La relación Sr/Ba, que varía entre 0.44 y 6.48, indica un paleoambiente con variable salinidad durante el Mioceno.

Bibliographic References

  • Aïfa, T., Feinberg, H., Derder, M. M., & Merabet, N. (1992). Rotations paléomagnétiques récentes dans le bassin du Chélif (Algérie). Comptes Rendus De L’académie Des Sciences, 314, 915–922.
  • Aïfa, T., Feinberg, H., Derder, M. M., & Merabet, N. (2003). Contraintes magnétostratigraphiques concernant la durée de l’interruption des communications marines en Méditerrannée occidentale pendant le Messinien supérieur. Geodiversitas, 25, 617–631.
  • Amajor, L. C. (1987). Major and trace elements geochemistry of Albin and Turonian shales from the Southern Benue trough, Nigeria. Journal of African Earth Sciences, 6, 633–641.
  • Ameur-Chehbeur, A. (1988). Biochronologie des formations continentales du Néogène et du Quaternaire de l’Algérie. Contribution des micromammifères. PhD Thesis, Université d’Oran, 432 p.
  • Arab, M. R., Roure, F., Zazoun, R. S., Mahdjoub, Y., & Badji, R. (2015). Source rocks and related petroleum systems of the Chelif Basin, (western Tellian domain, north Algeria). Marine and Petroleum Geology, 64, 363–385.
  • Armstrong-Altrin, J. S., Machain-Castillo, M. L., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J. A., & Ruíz-Fernández, A. C. (2015). Provenance and depositional history of continental slope sediments in the southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research, 95, 15–26.
  • Atif, K. F. T., Bessedik, M., Belkebir, L., Mansour, B., & Saint Martin, J. P. (2008). Le passage Mio-Pliocène dans le bassin du Bas Chélif (Algérie). Biostratigraphie Et Paléoenvironnements. Geodiversitas, 30, 97–116.
  • Babechuk, M. G., Widdowson, M., & Kamber, B. S. (2014). Quantifying chemical weathering intensity and trace element release from two contrasting basalt profles, Deccan Traps, India. Chemical Geology, 363, 56–75.
  • Belhadji, A., Belkebir, L., Saint Martin, J. P., Mansour, B., Bessedik, M., & Conesa, G. (2008). Apports des foraminifères planctoniques à la biostratigraphie du Miocène supérieur et du Pliocène de Djebel Diss (bassin du Chélif, Algérie). Geodiversitas, 30, 79–96.
  • Belkebir, L. (1986). Le Néogène de la bordure nord - occidentale du massif de Dahra (Algérie). Biostratigraphie, Paléoécologie, Paléogéographie. PhD Thesis, Université de Provence
  • Belkebir, L., Bessedik, M., Ameur-Chehbour, A., & Anglada, R. (1996). Le Miocène des bassins nord occidentaux d’Algérie : Biostratigraphie et eustatisme, in Géologie de l’Afrique et de l’Atlantique Sud, actes Colloques Angers 1994. Elf Aquitaine Éditions, 16, 553–561.
  • Belkebir, L., Bessedik, M., & Mansour, B. (2002). Le Miocène supérieur du Bassin du Bas Chélif : Attribution biostratigraphique à partir des foraminifères planctoniques. Mémoires Du Service Géologique De L’algérie, 11, 187–194.
  • Bessedik, M., Belkebir, L., & Mansour, B. (2002). Révision du Miocène inférieur (au sens des anciens auteurs) des dépôts du bassin du bas Chelif (Oran, Algérie). Conséquences biostratigraphiques et géodynamiques. Mémoires Du Service Géologique National De L’algérie, 11, 167–186.
  • Blatt, H., Middleton, G., & Murray, R. (1980). Origin of sedimentary rocks. Englewood dins: Prentice-Hall.
  • Cao, H., Guo, W., Shan, X., Ma, L., & Sun, P. (2015). Paleolimnological environments and organic accumulation of the Nenjiang Formation in the southeastern Songliao Basin. China, Oil Shale, 32, 5–24.
  • Chester, R., Baxter, G. B., Behairy, A. K. A., Connor, K., Cross, D., Elderfeld, H., & Padghamm, R. C. (1977). Soil-sized eolian dusts from the lower troposphere of the eastern Mediterranean Sea. Marine Geology, 24, 201–217.
  • Chesworth, W., Dejou, J., & Larroque, P. (1981). The weathering of basalts and relative mobilities of the major elements at Belbex, France. Geochemical Et Cosmochimica Acta, 45, 1235–1243.
  • Cox, R., Lower, D. R., & Cullers, R. L. (1995). The infuence of sediment recycling and basement composition on evolution of mud rock chemistry in the southwestern United States. Geochemical Et Cosmochimica Acta, 59, 2919–2940.
  • Crook, K.A.W. (1974). Lithogenesis and geotectonics: the significance of compositional variation in flysch arenites (graywackes). In: Dott Jr., R.H., Shaver, R.H. (Eds.), Modern and Ancient Geosynclinal Sedimentation, Special PublicationsSEPM, 19, 304–310.
  • Descourvieres, C., Douglas, G., Leyland, L., Hartog, N., & Prommer, H. (2011). Geochemical reconstruction of the provenance, weathering and deposition of detrital-dominated sediments in the Perth Basin: The Cretaceous Leederville Formation, south-west Australia. Sedimentary Geology, 236, 62–76.
  • Dixon, J. L., Hartshorn, A. S., Heimsath, A. M., DiBiase, R. A., & Whipple, K. X. (2012). Chemical weathering response to tectonic forcing: A soils perspective from the San Gabriel Mountains, California. Earth and Planetary Science Letters, 323–324, 40–49.
  • Fedo, C. M., & Babechuk, M. G. (2023). Petrogenesis of siliciclastic sediments and sedimentary rocks explored in three-dimensional Al2O3–CaO*+Na2O–K2O–FeO+MgO (A–CN–K–FM) compositional space. Canadian Journal of Earth Sciences. https://doi.org/ 10.1139/cjes-2022-005
  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the efects of K-metasomatism in sedimentary rocks and paleosols with implications for palaeoweathering conditions and provenance. Geology, 23, 921–924.
  • Fu, H., Jian, X., Liang, H., Zhang, W., Shen, X., & Wang, L. (2022). Tectonic and climatic forcing of chemical weathering intensity in the northeastern Tibetan Plateau since the middle Miocene. CATENA, 208, 105785.
  • Hadji, F. (2020). Les marnes du Miocene de l’Oranie: Caractérisation minéralogique et géochimique. PhD Thesis, Université de Tlemcen
  • Hadji, F., Marok, A., & Mokhtar Samet, A. (2019). Miocene sediment mineralogy of the lower Chelif basin (NW Algeria): Implications for weathering and provenance. Turkish Journal of Earth Sciences, 28, 85–102.
  • Harnois, L. (1988). The CIW index: A new Chemical Index of weathering. Sedimentary Geology, 55, 319–322.
  • Hassan, S., Ishiga, H., Roser, B. P., Dozen, K., & Naka, T. (1999). Geochemistry of Permian–Triassic shales in the Salt Range, Pakistan: Implications for provenance and tectonism at the Gondwana margin. Chemical Geology, 158, 293–314.
  • Hayashi, K. I., Fujisawa, H., Holland, H. D., & Ohomoto, H. (1997). Geochemistry of ~1.9 Ga sedimentary rocks from northern Labrador, Canada. Geochemical Et Cosmochimica Acta, 61, 4115–4137.
  • Herron, M. M. (1988). Geochemical classifcation of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829.
  • Hill, I. G., Worden, R. H., & Meighan, I. G. (2000). Geochemical evolution of a palaeolaterite: The Interbasaltic Formation, Northern Ireland. Chemical Geology, 166, 65–84.
  • Hren, T. M., Hilley, G. E., & Chamberlain, C. P. (2007). The relationship between tectonic uplift and chemical weathering rates in the Washington Cascades: Field measurements and model predictions. American Journal of Sciences, 307, 1041–1063.
  • Hu, J., Li, Q., Fang, N., Yang, J., & Ge, D. (2015). Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone, Qiangtang Basin, Tibet: Insights into source-area weathering, provenance, recycling, and tectonic setting. Arabian Journal of Geosciences, 8, 5373–5388.
  • Jacobson, A. D., Blum, J. D., Chamberlain, C. P., Craw, D., & Koons, P. O. (2003). Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica Et Cosmochimica Acta, 67, 29–46.
  • Jian, C., Ming, W., Yan, C., Kai, H., Lizeng, B., Longgang, W., & Ying, Z. (2012). Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China. Chemie Der Erde, 72, 245–252.
  • Liu, Z., Zhao, Y., Colin, C., Siringan, F. P., & Wu, Q. (2009). Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments. Applied Geochemistry, 24, 2195–2205.
  • Mansour, B., Bessedik, M., Saint Martin, J.-P., & Belkebir, L. (2008). Signifcation paléoécologie des assemblages de diatomées du Messinien du Dahra sud-occidental (bassin du Chelif, Algérie nord-occidental). Geodiversitas, 30, 117–139.
  • Maslov, A. V., Krupenin, M. T., & Gareev, E. Z. (2003). Lithological, lithochemical, and geochemical indicators of paleoclimate: Evidence from Riphean of the Southern Urals. Lithology and Mineral Resources, 38, 427–446.
  • McLennan, S.M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 2000GC000109.
  • Meghraoui, M. (1982). Étude néotectonique de la région nord-ouest d’El-Asnam: relation avec le séisme du 10 octobre 1980. Thesis 3ème cycle, Université de Paris VII.
  • Meghraoui, M. (1986). Seismotectonics of the Lower Chelef basin: Structural Background of the El Asnam (Algeria) earthquake. Tectonics, 6, 809–836.
  • Meng, Q. T., Liu, Z. J., Bruch, A. A., Liu, R., & Hu, F. (2012). Palaeoclimatic 438 evolution during the Eocene and its infuence on oil shale mineralization, Fushun Basin, China. Journal of Asia Earth Sciences, 45, 95–105.
  • Middleburg, J. J., van der Weijden, C. H., & Woittiez, J. R. W. (1988). Chemical processes afecting the mobilities of major, minor and trace elements during the weathering of granitic rocks. Chemical Geology, 68, 253–273.
  • Mokhtar Samet, A., Marok, A., Reolid, M. & Kamikuri, S.I. (2021). Les radiolaires messiniens du Dahra (Bassin du Bas Chélif, Algérie): systématique et intérêt biostratigraphique. Annales de Paléontologie, 107, 102520.https://doi.org/10.1016/j.annpal. 2021.102520.
  • Mokhtar Samet, A., Reolid, M., Marok, A., & Kamikuri, S. I. (2022). Environmental conditions during the deposition of the diatomite–organic-rich marl alternation of the lower Messinian of the Lower Chelif Basin (Algeria) interpreted from microfossil assemblages and geochemistry. Journal of African Earth Sciences, 190, 104521. https://doi.org/10.1016/j.jafrearsci.2022. 104521
  • Moosavirad, S. M., Janardhanab, M. R., Sethumadhav, M. S., Moghadam, M. R., & Shankara, M. (2011). Geochemistry of Lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, source weathering and tectonic setting. Chemie Der Erde, 7, 279–288.
  • Murkute, Y. A. (2023). Petrography and geochemistry of Sullavai Sandstones of Kanpa-Tempa, Chandrapur District, Maharashtra, India. Journal of the Geological Society of India, 99, 1225–1233.
  • Nagarajan, R., Roy, P. D., Jonathan, M. P., Lozano, R., Kessler, F. L., & Prasanna, M. V. (2014). Geochemistry of Neogene sedimentary rocks from Borneo Basin, East Malaysia: Paleo-weathering, provenance and tectonic setting. Chemie Der Erde-Geochemistry, 74, 139–146.
  • Nesbitt, H. W. (1979). Mobility and fractionation of rate earth elements during weathering of a granodiorite. Nature, 279, 206–210.
  • Nesbitt, H. W., Marcovics, G., & Price, R. C. (1980). Chemical processes afecting alkalis and alkaline earths during continental weathering. Geochimica Et Cosmochimica Acta, 44, 1659–1666.
  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.
  • Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Et Cosmochimica Acta, 48, 1523–1534.
  • Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profles. Journal of Geology, 97, 129–147.
  • Neurdin-Trescartes, J. (1992). Le remplissage sédimentaire du bassin Néogène du Chelif, modèle de référence de bassins intramontagneux. PhD Thesis, Université de Pau.
  • Neurdin-Trescartes, J. (1995). Paléogéographie du bassin de Chélif (Algérie) au Miocène. Causes et Conséquences. Géologie Méditerranéenne, XXII, 2, 61–71.
  • Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine, 107, 501–504.
  • Patel, A., Raj, R., & Tripathi, J. K. (2022). Geochemical trends and rare Earth elements’ behaviour in the recently exposed weathering profles of the Deccan Basalts from Central India. Journal of the Geological Society of India, 98, 1653–1660.
  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and sandstone. Springer.
  • Pye, K. (1987). Aeolian dust and dust deposits (p. 334). Academic Press.
  • Rodríguez-Tovar, F. J., & Reolid, M. (2013). Environmental conditions during the Toarcian Oceanic Anoxic Event (T-OAE) in the westernmost Tethys: Infuence of the regional context on a global phenomenon. Bulletin of Geosciences, 88, 697–712.
  • Roser, B. P., Cooper, R. A., Nathan, S., & Tulloch, A. J. (1996). Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics, 39, 1–16.
  • Rouchy, J. M. (1982). La genèse des évaporites messiniennes de Méditerranée. Mémoires Du Muséum National D’histoire Naturelle, 50, 1–265.
  • Rouchy, J. M., Caruso, A., Pierre, C., Blanc-Valleron, M. M., & Bassetti, M. A. (2007). The end of the Messinian salinity crisis: Evidences from the Chelif Basin (Algeria). Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 386–417.
  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise of Geochemistry, 3, 1–64.
  • Sahoo, P. K., Felix Guimarães, J. T., Martins Souza-Filho, P. W., Sousa da Silva, M., Maurity, C. W., Powell, M. A., Rodrigues, T. M., Fonseca da Silva, D., Mardegan, S. F., Furtini Neto, A. E., & Dall’Agnol, R. (2016). Geochemistry of upland lacustrine sediments from Serra dos Carajás, Southeastern Amazon, Brazil: Implications for catchment weathering, provenance, and sedimentary processes. Journal of South American Earth Sciences, 72, 178–190.
  • Saint-Martin, J. P. (1990). Les formations récifale coralliennes du Miocène supérieur d’Algérie et du Maroc. Aspects paléoécologiques et paléogéographiques. Mémoires Du Muséum National D’histoire Naturelle, 56, 1–366.
  • Singh, M., Sharma, M., & Tobschall, H. J. (2005). Weathering of the Ganga alluvial plain, northern India: Implications from fuvial geochemistry of the Gomati River. Applied Geochemistry, 20, 1–21.
  • Song, C., Hu, S., Han, W., Zhang, T., Fang, X., Gao, J., & Wu, F. (2014). Middle Miocene to earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 67–76.
  • Sonowal, P., Khan, T., Gogoi, M., Kumar, T. S., Walling, T., & Phukan, S. (2022). Petrography and geochemistry of sandstones of Eocene Kopili Formation, Shillong Plateau: Implications on paleo-weathering, provenance and tectonic setting. Journalof Geological Societyof India, 98, 219–231.
  • Taylor, S. R., & McLennan, S. M. (1985). Crust: Its Composition and Evolution. Blackwell Scientifc Publications.
  • Thomas, H. (1985). Géodynamique d’un bassin intramontagneux. Le bassin du Bas Chelif occidental durant le Mio-Plio-Quaternaire. PhD Thesis, Université de Pau et Pays de l’Adour.
  • Vosoughi Moradi, A., Sarı, A., & Akkaya, P. (2016). Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for Paleoclimate conditions, source-area weathering, provenance and tectonic setting. Sedimentary Geology, 341, 289–303.
  • Weltje, G. J., & Von Eynatten, H. (2004). Quantitative provenance analysis of sediments: Review and outlook. Sedimentary Geology, 171, 1–11.
  • Wildi, W. (1983). La chaine tello-rifaine (Algérie, Maroc, Tunisie): Structure, stratigraphie et évolution du Trias au Miocène. Revue De Géographie Physique Et De Géologie Dynamique, 24, 201–297.
  • Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean Shales from the Witwatersrand Super group, South Africa: Source-Area Weathering and Provenance. Geochimimica Et Cosmochimica Acta, 51, 2401–2416.
  • Zhao, Z. Y., Zhao, J. H., Wang, H. J., Liao, J. D., & Liu, C. M. (2007). Distribution characteristics and applications of trace elements in Junggar Basin. Natural Gas Exploration and Development, 30, 30–33.