Reducción del efecto matriz en el análisis de micotoxinas en alimentos de alto contenido graso mediante HPLC-MS empleando sorbentes para la extracción en fase sólida

  1. Delia Castilla-Fernández 1
  2. Priscilla Rocío-Bautista 1
  3. David Moreno-González 1
  4. Juan F. García-Reyes 1
  1. 1 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

Revista:
Cromatografía y técnicas afines

ISSN: 1132-1369

Año de publicación: 2023

Volumen: 44

Número: 1

Páginas: 3-15

Tipo: Artículo

Otras publicaciones en: Cromatografía y técnicas afines

Resumen

El efecto matriz es un parámetro que debe ser estudiado cuando se desarrollan métodos analíticos basados en HPLC-MS, sobre todo empleando ESI como fuente de ionización. En los alimentos grasos una etapa de extracción genérica no logra minimizar el número de sustancias co-extraídas, por lo que se hace necesaria una etapa posterior de limpieza que puede llevarse a cabo mediante extracción en fase sólida (SPE) o SPE dispersiva (dSPE). Las micotoxinas pueden encontrarse en una gran cantidad de alimentos grasos. Por ello, en esta revisión se centra en protocolos de limpieza específicos para la reducción del efecto matriz en el análisis de micotoxinas mediante HPLCMS: columnas de inmunoafinidad, polímeros de impronta molecular, sorbentes poliméricos, sorbentes empleados en la metodología QuEChERS (C18, PSA, GCB, Florisil, Alúmina), sorbentes basados en ZrO2 (Z-Sep) o especialmente diseñados para el análisis de matrices grasas (EMR-Lipid).

Referencias bibliográficas

  • European Commission. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. 2020. COM/2020/381 final.
  • EFSA (European Food Safety Authority). Mycotoxins. 2022.
  • Sabuncuoğlu, S. Introductory Chapter: Mycotoxins and Food Safety. In Sabuncuoğlu, S. (Ed.), Mycotoxins and Food Safety. IntechOpen. 2020. ISBN: 978-1-78984- 875-5.
  • Kabak, B. The fate of mycotoxins during thermal food processing. J. Sci. Food Agric., 2009, 89, 549-554.
  • Idris, Y. M. A., Mariod, A. A., Elnour, I. A., & Mohamed, A. A. Determination of aflatoxin levels in Sudanese edible oils. Food Chem. Toxicol., 2010, 48, 2539-2541.
  • European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. 2023. Consolidated text: 02006R1881-20230101.
  • European Comission. Commission Decision 2002/657/ EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal, 2002, L 221.
  • EU Reference Laboratories. Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food. 2016.
  • European Commision. Guidance document on identification of mycotoxins in food and feed. SANTE/12089 /2016. 2017.
  • Shephard, G. S. Current status of mycotoxin analysis: a critical review. J. AOAC Int., 2016, 99(4), 842-848.
  • Onji, Y., Aoki, Y., Tani, N., Umebayashi, K., Kitada, Y., & Dohi, Y. Direct analysis of several Fusarium mycotoxins in cereals by capillary gas chromatography-mass spectrometry. J. Chromatogr. A, 1998, 815(1), 59-65.
  • Rodríguez-Carrasco, Y., Berrada, H., Font, G., & Mañes, J. Multi-mycotoxin analysis in wheat semolina using an acetonitrile-based extraction procedure and gas chromatography-tandem mass spectrometry. J. Chromatogr. A, 2012, 1270, 28-40.
  • Vargas Medina, D. A., Bassolli Borsatto, J. V., Maciel, E. V. S., & Lanças, F. M. Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. TrAC, Trends Anal. Chem., 2021, 135, 116156.
  • Hajšlová, J. & Zrostlíková, J. Matrix effects in (ultra) trace analysis of pesticide residues in food and biotic matrices. J. Chromatogr. A, 2003, 1000, 181-197.
  • Trufelli, H., Palma, P., Famiglini, G., & Cappiello, A. An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrom. Rev., 2011, 30, 491-509.
  • USFDA (United States Food Drug Administration). Pesticide Analytical Manual Volume I (PAM) 3rd Edition. 1999.
  • Wang, L., Zhang, Q., Yan, Z., Tan, Y., Zhu, R., Yu, D., Yang, H. Occurrence and Quantitative Risk Assessment of Twelve Mycotoxins in Eggs and Chicken Tissues in China. Toxins, 2018, 10(11), 477.
  • Tolosa, J., Barba, F. J., Font, G., Ferrer, E. Mycotoxin Incidence in Some Fish Products: QuEChERS Methodology and Liquid Chromatography Linear Ion Trap Tandem Mass Spectrometry Approach. Molecules, 2019, 24(3), 527.
  • USDA (U.S. Department of Agriculture). 2023. Agricultural Research Service. FoodData Central.
  • Chambers, E., Wagrowski-Diehl, Lu, Z., & Mazzeo, J. R. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr. B, 2007, 852, 22-34.
  • Ferrer, C., Lozano, A., Agüera, A., Jiménez-Girón, A., & Fernández-Alba, A. Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. J. Chromatogr. A, 2011, 1218, 7634-7639.
  • Delaunay, N., Combès, A., & Pichon, V. Review. Immunoaffinity Extraction and Alternative Approaches for the Analysis of Toxins in Environmental, Food or Biological Matrices. Toxins, 2020, 12, 795.
  • Desmarchelier, A., Tessiot, S., Bessaire, T., Racault, L., Fiorese, E., Urbani, A., Chan, W. C., Chen, P., & Mottier, P. Combining the quick, easy, cheap, effective, rugged and safe approach and clean-up by immunoaffinity column for the analysis of 15 mycotoxins by isotope dilution liquid chromatography tandem mass spectrometry. J. Chromatogr. B, 2014, 1337, 75-84.
  • Vaclavikova, M., MacMahon, S., Zhang, K., & Begley, T. H. Application of single immunoaffinity clean-up for simultaneous determination of regulated mycotoxins in cereals and nuts. Talanta, 2013, 117, 345-351.
  • Kim, D. H., Hong, S. Y., Kang, J. W., Cho, S. M., Lee, K. R., An, T. K., & Chung, S. H. Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins, 2017, 9(3), 106 Solfrizzo, M., Gambacorta, L., Bibi, R., Ciriaci, M., Paoloni, A., & Pecorelli, I. Multimycotoxin analysis by LCMS/MS in cereal food and feed: Comparison of different approaches for extraction, purification, and calibration. J. AOAC Int., 2018, 101(3), 647-657.
  • Martín-Esteban, A. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC, Trends Anal. Chem., 2013, 45, 169-181.
  • Bryła, M., Jędrzejczak, R., Roszko, M., Szymczyk, K., Obiedziński, M. W., Sękul, J., & Rzepkowska, M. Application of molecularly imprinted polymers to determine B 1, B 2, and B 3 fumonisins in cereal products. J. Sep. Sci., 2013, 36(3), 578-584.
  • Lucci, P., David, S., Conchione, C., Milani, A., Moret, S., Pacetti, D., & Conte, L. Molecularly imprinted polymer as selective sorbent for the extraction of zearalenone in edible vegetable oils. Foods, 2020, 9(10), 1439.
  • Castilla-Fernández, D., Rocío-Bautista, P., Moreno-González, D., García-Reyes, J. F., & Molina-Díaz, A. Dilute-and-shoot versus clean-up approaches: A comprehensive evaluation for the determination of mycotoxins in nuts by UHPLC-MS/MS. LWT-Food Sci. Technol., 2022, 169, 113976.
  • Sun, W., Han, Z., Aerts, J., Nie, D., Jin, M., Shi, W., & Wu, A. A reliable liquid chromatography-tandem mass spectrometry method for simultaneous determination of multiple mycotoxins in fresh fish and dried seafoods. J. Chromatogr. A, 2015, 1387, 42-48.
  • Sun, D., Qiu, N., Zhou, S., Lyu, B., Zhang, S., Li, J., & Wu, Y. Development of sensitive and reliable UPLC-MS/ MS methods for food analysis of emerging mycotoxins in China total diet study. Toxins, 2019, 11(3), 166.
  • Ren, Y., Zhang, Y., Shao, S., Cai, Z., Feng, L., Pan, H. Simultaneous determination of multi-component mycotoxin contaminants in foods and feeds by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A, 2007, 1143, 48–63.
  • Kokkonen, M., & Jestoi, M. Determination of ergot alkaloids from grains with UPLC‐MS/MS. J. Sep. Sci., 2010, 33(15), 2322-2327.
  • Luo, D., Guan, J., Dong, H., Chen, J., Liang, M., Zhou, C., & Xu, X. Simultaneous determination of twelve mycotoxins in edible oil, soy sauce and bean sauce by PRiME HLB solid phase extraction combined with HPLC-Orbitrap HRMS. Front. nutr., 2022, 9.
  • Scarpino, V., Reyneri, A., & Blandino, M. Development and Comparison of Two Multiresidue Methods for the Determination of 17 Aspergillus and Fusarium Mycotoxins in Cereals Using HPLC-ESI-TQ-MS/MS. Front. Microbiol., 2019, 10, 361.
  • Sharmili, K., Jinap, S., & Sukor, R. Development, optimization and validation of QuEChERS based liquid chromatography tandem mass spectrometry method for determination of multimycotoxin in vegetable oil. Food Control, 2016, 70, 152-160.
  • Koesukwiwat, U., Sanguankaew, K., & Leepipatpiboon, N. Evaluation of a modified QuEChERS method for analysis of mycotoxins in rice. Food Chem., 2014, 153, 44-51.
  • Capriotti, A. L., Cavaliere, C., Foglia, P., Samperi, R., Stampachiacchiere, S., Ventura, S., & Laganà, A. Multiclass analysis of mycotoxins in biscuits by high performance liquid chromatography-tandem mass spectrometry. Comparison of different extraction procedures. J. Chromatogr. A, 2014, 343, 69-78.
  • Alcántara-Durán, J., Moreno-González, D., García-Reyes, J. F., & Molina-Díaz, A. Use of a modified QuEChERS method for the determination of mycotoxin residues in edible nuts by nano flow liquid chromatography high resolution mass spectrometry. Food Chem., 2019, 279, 144-149.
  • Hidalgo-Ruiz, J. L., Romero-González, R., Martínez-Vidal, J. L., & Garrido-Frenich, A. Determination of mycotoxins in nuts by ultra high-performance liquid chromatography-tandem mass spectrometry: Looking for a representative matrix. J. Food Compos. Anal., 2019, 82, 103228.
  • Cerqueira, M. B. R., de Borba, V. S., Rodrigues, M. H. P., Silveira, C. O., Badiale-Furlong, E., & Kupski, L. Reliable and Accessible Method for Trichothecenes Type B Determination in Oat Products. Food Anal. Methods, 2023, 16(1), 83-95.
  • Martínez-Domínguez, G., Romero-González, R., Arrebola, F. J., & Frenich, A. G. Multi-class determination of pesticides and mycotoxins in isoflavones supplements obtained from soy by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Food Control, 2016, 59, 218-224.
  • Soares Mateus, A. R., Barros, S., Pena, A., & Sanches Silva, A. Development and Validation of QuEChERS Followed by UHPLC-ToF-MS Method for Determination of Multi-Mycotoxins in Pistachio Nuts. Molecules, 2021, 26, 5754.
  • Cunha, S. C., Sá, S. V. M., & Fernandes., J. O. Multiple mycotoxin analysis in nut products: Occurrence and risk characterization. Food Chem. Toxicol., 2018, 114, 260-269.
  • Carbonell-Rozas, L., Gámiz-Gracia, L., Lara, F. J., & García-Campaña, A. M. Determination of the Main Ergot Alkaloids and Their Epimers in Oat-Based Functional Foods by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. Molecules, 2021, 26, 12, 3717.
  • Prata, R., López-Ruiz, R., Petrarca, M. H., Godoy, H. T., Frenich, A. G., & Romero-González, R. Targeted and non-targeted analysis of pesticides and aflatoxins in baby foods by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. Food Control, 2022, 139, 109072.
  • Long, Y., Huang, Y., Zhu, M., Ma, Y., Gan, B., Wang, Y., & Chen, Y. Development of QuEChERS clean–up based on EMR–lipid for simultaneous analysis of 9 mycotoxins, acaylamide and 5–Hydroxymethylfurfural in biscuit by UHPLC–MS/MS. Food Chem., 2023, 409, 135265.