Multi-objective optimization of virtual machine migration among cloud data centers

  1. Maldonado Carrascosa, Francisco Javier 1
  2. Seddiki, Doraid 1
  3. Jiménez Sánchez, Antonio 1
  4. García Galán, Sebastián 1
  5. Valverde Ibáñez, Manuel 1
  6. Marchewka, Adam 2
  1. 1 Telecommunications Engineering Department, University of Jaen, Avenida de la Universidad, S/N, 23700, Linares, Jaen, Spain
  2. 2 Faculty of Telecommunications, University of Science and Technology of Bydgoszcz, Profesora Sylwestra Kaliskiego, 7, 85-796, Bydgoszcz, Poland
Zeitschrift:
Soft Computing

ISSN: 1432-7643 1433-7479

Datum der Publikation: 2024

Art: Artikel

DOI: 10.1007/S00500-024-09950-2 GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Soft Computing

Zusammenfassung

Workload migration among cloud data centers is currently an evolving task that requires substantial advancements. The incorporation of fuzzy systems holds potential for enhancing performance and efficiency within cloud computing. This study addresses a multi-objective problem wherein the goal is to maximize the interpretability and the percentage of renewable energy consumed by a fuzzy meta-scheduler system in cloud scenarios. To accomplish this objective, the present research proposes a novel approach utilizing a multi-objective Knowledge Acquisition with a Swarm Intelligence Approach algorithm. Additionally, it takes advantage of a framework built on CloudSim, which includes virtual machine migration capabilities based on an expert system. Furthermore, a hierarchical fuzzy system is employed to assess rule base interpretability, along with another multi-objective algorithm, named Non-dominated Sorting Genetic Algorithm II. The framework and hierarchical system are employed to perform various simulation results concerning renewable energy and interpretability, while the algorithms aim to enhance the system’s performance and interpretability. Empirical results demonstrate that it is possible to improve the performance of cloud data centers while improving the interpretability of the corresponding fuzzy rule-based system. The proposed multi-objective algorithm shows comparable or superior performance to the genetic algorithm across diverse scenarios. The simulation results indicate that improvements in cloud data center performance can be achieved while enhancing system interpretability. The average improvement in the interpretability index ranges from 0.6 to 6%, with a corresponding increase in renewable energy utilization ranging from 5 to 6%.

Bibliographische Referenzen

  • Abbasi-khazaei T, Rezvani MH (2022) Energy-aware and carbon-efficient vm placement optimization in cloud datacenters using evolutionary computing methods. Soft Comput 26(18):9287–9322. https://doi.org/10.1007/s00500-022-07245-y
  • Aghaeipoor F, Javidi MM, Fernández A (2022) IFC-BD: an interpretable fuzzy classifier for boosting explainable artificial intelligence in big data. IEEE Trans Fuzzy Syst 30(3):830–840. https://doi.org/10.1109/TFUZZ.2021.3049911
  • Ahmad S, Mishra S, Sharma V (2023) Green computing for sustainable future technologies and its applications. In: Contemporary studies of risks in emerging technology, Part A. Emerald Publishing Limited, pp 241–256
  • Alonso J, Magdalena L (2011a) HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers. Soft Comput 15:1959–1980. https://doi.org/10.1007/s00500-010-0628-5
  • Alonso JM, Magdalena L (2011b) Special issue on interpretable fuzzy systems. Inf Sci 181(20):4331–4339. https://doi.org/10.1016/j.ins.2011.07.001
  • Alonso J, Guillaume S, Magdalena L (2006) A hierarchical fuzzy system for assessing interpretability of linguistic knowledge bases in classification problems. In: Information processing and management of uncertainty in knowledge-based systems (IPMU), pp 348–355
  • Alonso JM, Cordón O, Quirin A et al (2011) Analyzing interpretability of fuzzy rule-based systems by means of fuzzy inference-grams. In: World Conference on Soft Computing (WConSC 2011)
  • Bai K, Zhang W, Wen S et al (2024) A data-knowledge-driven interval type-2 fuzzy neural network with interpretability and self-adaptive structure. Inf Sci 660:120133
  • Barbosa G, Dantas M, de Oliveira T, Filho A et al (2023) A fuzzy scheduler for MAS applied to object tracking. Eng Appl Artif Intell 119:105796. https://doi.org/10.1016/j.engappai.2022.105796
  • Belgacem A, Mahmoudi S, Ferrag MA (2023) A machine learning model for improving virtual machine migration in cloud computing. J Supercomput 79(9):9486–9508. https://doi.org/10.1007/s11227-022-05031-z
  • Bobyr M, Arkhipov A, Emelyanov S et al (2023) A method for creating a depth map based on a three-level fuzzy model. Eng Appl Artif Intell 117:105629. https://doi.org/10.1016/j.engappai.2022.105629
  • Booker L, Goldberg D, Holland J (1989) Classifier systems and genetic algorithms. Artif Intell 40(1):235–282. https://doi.org/10.1016/0004-3702(89)90050-7
  • Chaudhary P, Kumar V, Joshi M et al (2023) Live virtual machine migration techniques in cloud computing: a review. In: 2023 IEEE World Conference on Applied Intelligence and Computing (AIC). IEEE, pp 446–451. https://doi.org/10.1109/AIC57670.2023.10263955
  • Chrobak R, Galán SG, Expósito EM et al (2023) Color tracking application using ai-based docker container scheduling in fog computing. In: International conference on computer recognition systems. Springer, pp 169–183. https://doi.org/10.1007/978-3-031-41630-9_17
  • Cordon O, Herrera F, Hoffmann F et al (2001) Genetic fuzzy systems. World Scientific, Singapore. https://doi.org/10.1142/4177
  • Cui Z, Zhao T, Wu L et al (2023) Multi-objective cloud task scheduling optimization based on evolutionary multi-factor algorithm. IEEE Trans Cloud Comput. https://doi.org/10.1109/TCC.2023.3315014
  • Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017
  • Deepika T, Dhanya NM (2023) Multi-objective prediction-based optimization of power consumption for cloud data centers. Arab J Sci Eng 48:1173–1191. https://doi.org/10.1007/s13369-022-06694-9
  • Exposito JM, Galan SG, Reyes NR et al (2007) Audio coding improvement using evolutionary speech/music discrimination. In: 2007 IEEE International Fuzzy Systems Conference, pp 1–6. https://doi.org/10.1109/FUZZY.2007.4295472
  • Gacto M, Alcalá R, Herrera F (2011) Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures. Inf Sci 181(20):4340–4360. https://doi.org/10.1016/j.ins.2011.02.021(special Issue on Interpretable Fuzzy System)
  • García-Galán S, Prado RP, Expósito JEM (2014) Swarm fuzzy systems: knowledge acquisition in fuzzy systems and its applications in grid computing. IEEE Trans Knowl Data Eng 26(7):1791–1804. https://doi.org/10.1109/TKDE.2013.118
  • Gegov AE, Frank PM (1995) Decomposition of multivariable systems for distributed fuzzy control. Fuzzy Sets Syst 73(3):329–340. https://doi.org/10.1016/0165-0114(94)00303-O
  • Herrera F, Lozano M (1996) Adaptation of genetic algorithm. Parameters based on fuzzy logic controllers. In: Genetic algorithms and soft computing. https://api.semanticscholar.org/CorpusID:18275513
  • Imran M, Ibrahim M, Din MSU et al (2022) Live virtual machine migration: a survey, research challenges, and future directions. Comput Electr Eng 103:108297. https://doi.org/10.1016/j.compeleceng.2022.108297
  • Jang JSR (1991) Fuzzy modeling using generalized neural networks and Kalman filter algorithm. In: Proceedings of the ninth national conference on artificial intelligence, vol 2. AAAI Press, pp 762–767. https://doi.org/10.5555/1865756.1865795
  • Javadpour A, Sangaiah AK, Pinto P et al (2023) An energy-optimized embedded load balancing using DVFS computing in cloud data centers. Comput Commun 197:255–266. https://doi.org/10.1016/j.comcom.2022.10.019
  • Jin Q (2023) Genetic algorithm and support vector machine application in English text classification for intelligent teaching. Soft Comput. https://doi.org/10.1007/s00500-023-09084-x
  • Kacprzyk J, Pedrycz W (2015) Springer handbook of computational intelligence. Springer, Berlin. https://doi.org/10.1007/978-3-662-43505-2
  • Kirvan P (2022) How much energy do data centers consume? https://www.techtarget.com/searchdatacenter/tip/How-much-energy-do-data-centers-consume
  • Lesot MJ, Marsala C (2021) Fuzzy approaches for soft computing and approximate reasoning: theories and applications. Dedicated to Bernadette Bouchon-Meunier. Springer. https://doi.org/10.1007/978-3-030-54341-9
  • Li J, Zhang R, Zheng Y (2022) QoS-aware and multi-objective virtual machine dynamic scheduling for big data centers in clouds. Soft Comput 26:10239–10252. https://doi.org/10.1007/s00500-022-07327-x
  • Lu Y, Murzakhanov I, Chatzivasileiadis S (2021) Neural network interpretability for forecasting of aggregated renewable generation. In: 2021 IEEE International conference on communications, control, and computing technologies for Smart Grids (SmartGridComm), pp 282–288. https://doi.org/10.1109/SmartGridComm51999.2021.9631993
  • Mamdani EH (1977) Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans Comput C–26(12):1182–1191. https://doi.org/10.1109/TC.1977.1674779
  • Mandal R, Mondal MK, Banerjee S et al (2023) MECpVmS: an SLA aware energy-efficient virtual machine selection policy for green cloud computing. Clust Comput 26(1):651–665. https://doi.org/10.1007/s10586-022-03684-2
  • Mariotti E, Alonso Moral JM, Gatt A (2023) Exploring the balance between interpretability and performance with carefully designed constrainable neural additive models. Inf Fusion 99:101882. https://doi.org/10.1016/j.inffus.2023.101882
  • Martínez SZ, García-Nájera A, Menchaca-Méndez A (2023) Engineering applications of multi-objective evolutionary algorithms: a test suite of box-constrained real-world problems. Eng Appl Artif Intell 123:106192. https://doi.org/10.1016/j.engappai.2023.106192
  • Prado RP, Galán SG, Yuste AJ et al (2009) Evolutionary fuzzy scheduler for grid computing. In: Cabestany J, Sandoval F, Prieto A et al (eds) Bio-inspired systems: computational and ambient intelligence. Springer Berlin Heidelberg, Berlin, pp 286–293. https://doi.org/10.1007/978-3-642-02478-8_36
  • Prado RP, Galán SG, Expósito JEM et al (2010) Knowledge acquisition in fuzzy-rule-based systems with particle-swarm optimization. IEEE Trans Fuzzy Syst 18(6):1083–1097. https://doi.org/10.1109/TFUZZ.2010.2062525
  • Prado RP, Galán S, Expósito JE et al (2011) Genetic fuzzy rule-based scheduling system for grid computing in virtual organizations. Soft Comput 15(7):1255–1271. https://doi.org/10.1007/s00500-010-0660-5
  • Rawat P, Kumar P, Chauhan S (2023) Fuzzy logic and particle swarm optimization-based clustering protocol in wireless sensor network. Soft Comput 27(9):5177–5193. https://doi.org/10.1007/s00500-023-07833-6
  • Razak TR, Kamis NH, Anuar NH et al (2023) Decomposing conventional fuzzy logic systems to hierarchical fuzzy systems. In: 2023 IEEE International Conference on Fuzzy Systems (FUZZ). IEEE, pp 1–7. https://doi.org/10.1109/FUZZ52849.2023.10309727
  • Robles I, Alcalá R, Benítez JM et al (2009) Evolutionary parallel and gradually distributed lateral tuning of fuzzy rule-based systems. Evolut Intell. https://doi.org/10.1007/s12065-009-0025-0
  • Rudner TGJ, Toner H (2021) Key concepts in AI safety: interpretability in machine learning. Center for Security and Emerging Technology https://doi.org/10.51593/20190042
  • Samir A, Dagenborg H (2023) Adaptive controller to identify misconfigurations and optimize the performance of kubernetes clusters and iot edge devices. In: European conference on service-oriented and cloud computing. Springer, pp 170–187. https://doi.org/10.1007/978-3-031-46235-1_11
  • Sansanwal S, Jain N (2022) An improved approach for load balancing among virtual machines in cloud environment. Procedia Comput Sci 215:556–566.https://doi.org/10.1016/j.procs.2022.12.058(4th International Conference on Innovative Data Communication Technology and Application)
  • Seddiki D, García Galán S, Muñoz Expósito JE et al (2022) Sustainable expert virtual machine migration in dynamic clouds. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2022.108257
  • Shi Y, Eberhart R (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol 3, pp 1945–1950. https://doi.org/10.1109/CEC.1999.785511
  • Shuja J, Gani A, Shamshirband S et al (2016) Sustainable cloud data centers: a survey of enabling techniques and technologies. Renew Sustain Energy Rev 62:195–214. https://doi.org/10.1016/j.rser.2016.04.034
  • Singh AK, Swain SR, Saxena D et al (2023a) A bio-inspired virtual machine placement toward sustainable cloud resource management. IEEE Syst J 17(3):3894–3905. https://doi.org/10.1109/JSYST.2023.3248118
  • Singh VP, Sharma K, Chakraborty D (2023b) Solving capacitated vehicle routing problem with demands as fuzzy random variable. Soft Comput. https://doi.org/10.1007/s00500-023-08888-1
  • Smith SF (1980) A learning system based on genetic adaptive algorithms. Ph.D. thesis, University of Pittsburgh, USA. https://doi.org/10.5555/909835
  • Varshney A, Torra V (2023) Literature review of the recent trends and applications in various fuzzy rule-based systems. Int J Fuzzy Syst 25:2163–2186. https://doi.org/10.1007/s40815-023-01534-w
  • Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zaqout IS, Islam MS, Hadidi LA et al (2022) Modeling bidding decisions and bid markup size for construction projects: a fuzzy approach. Eng Appl Artif Intell 113:104982. https://doi.org/10.1016/j.engappai.2022.104982
  • Zheng J, Chien AA, Suh S (2020) Mitigating curtailment and carbon emissions through load migration between data centers. Joule 4(10):2208–2222. https://doi.org/10.1016/j.joule.2020.08.001
  • Zhou SM, Garibaldi JM, John RI et al (2009) On constructing parsimonious type-2 fuzzy logic systems via influential rule selection. IEEE Trans Fuzzy Syst 17(3):654–667. https://doi.org/10.1109/TFUZZ.2008.928597
  • Zulueta Y, Rodríguez D, Bello R et al (2016) A linguistic fusion approach for heterogeneous environmental impact significance assessment. Appl Math Model 40(2):1402–1417. https://doi.org/10.1016/j.apm.2015.07.016