Optimization of the Turning Process by Means of Machine Learning Using Published Data

  1. de Arriba-Pérez, Francisco
  2. García-Méndez, Silvia
  3. Carou, Diego
  4. Medina-Sánchez, Gustavo
Libro:
Materials Forming, Machining and Tribology

ISSN: 2195-0911 2195-092X

ISBN: 9783031484674 9783031484681

Año de publicación: 2024

Páginas: 273-287

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-031-48468-1_13 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Machining parameters play a critical role in the results of the turning process: cutting forces, dimensional accuracy, surface roughness, tool wear, etc. Manufacturers offer recommendations for their tools, but the complex relations between machining parameters make the process optimization process not straightforward. Researchers usually opt for performing experimental studies to optimize specific or multiple outputs of these processes. However, this approach is costly and time-consuming. Thus, in the present chapter, a methodology leveraging Machine Learning is introduced, capitalizing on extensive volumes of published data within the literature. Particularly, the chapter aims to study the surface roughness attained in turning the Ti6Al4V alloy.

Referencias bibliográficas

  • Alam, S. T., Tomal, A. A., & Nayeem, M. K. (2023). High-speed machining of Ti–6Al–4V: RSM-GA based optimization of surface roughness and MRR. Results in Engineering, 17, 100, 873–100, 883.
  • Amrita, M., Kamesh, B., & Sree, K. L. S. (2022). Multi-response optimization in machining Ti6Al4V using graphene dispersed emulsifier oil. Materials Today: Proceedings, 62, 1179–1188. 
  • Anurag, K. R., Sahoo, A. K., et al. (2022). Comparative performance analysis of coated carbide insert in turning of Ti-6Al-4V ELI grade alloy under dry, minimum quantity lubrication and spray impingement cooling environments. Journal of Materials Engineering and Performance, 31, 709–732. 
  • Assim, M., Obeidat, Q., & Hammad, M. (2020). Software defects prediction using machine learning algorithms. In Proceedings of the International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (pp. 1–6). IEEE.
  • Bashir, M. F., Arshad, H., Javed, A. R., et al. (2021). Subjective answers evaluation using machine learning and natural language processing. IEEE Access, 9, 158, 972–158, 983.
  • Berrar, D. (2019). Cross-validation. In Encyclopedia of bioinformatics and computational biology (pp. 542–545). Elsevier.
  • Carou, D., Sartal, A., & Davim, J. P. (2022). Machine learning and artificial intelligence with industrial applications. Springer.
  • Chen, Y., Sun, R., Gao, Y., et al. (2017). A nested-ANN prediction model for surface roughness considering the effects of cutting forces and tool vibrations. Measurement, 98, 25–34. 
  • Derani, M. N., & Ratnam, M. M. (2021). The use of tool flank wear and average roughness in assessing effectiveness of vegetable oils as cutting fluids during turning—A critical review. The International Journal of Advanced Manufacturing Technology, 112, 1841–1871.
  • García-Martínez, F., Carou, D., de Arriba-Pérez, F., et al. (2023). Toward datadriven research: preliminary study to predict surface roughness in material extrusion using previously published data with machine learning. Rapid Prototyping Journal, 29(8), 1640–1652.
  • Jasperneite, J., Sauter, T., & Wollschlaeger, M. (2020). Why we need automation models: Handling complexity in Industry 4.0 and the internet of things. IEEE Industrial Electronics Magazine, 14(1), 29–40.
  • Knight, W. A., & Boothroyd, G. (2019). Fundamentals of metal machining and machine tools. CRC Press.
  • Lauro, C. H., Pereira, R. B. D., Brandão, L. C., et al. (2016). Design of experiments—Statistical and artificial intelligence analysis for the improvement of machining processes: A review. Springer.
  • Liao, Z., la Monaca, A., Murray, J., et al. (2021). Surface integrity in metal machining—Part I: Fundamentals of surface characteristics and formation mechanisms. International Journal of Machine Tools and Manufacture, 162, 103, 687–103, 737.
  • Mia, M., Gupta, M. K., Lozano, J. A., et al. (2019). Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. Journal of Cleaner Production, 210, 121–133.
  • Moreno-Mateos, M. A., & Carou, D. (2022). A note on big data and value creation. Springer.
  • Ngiam, K. Y., & Khor, I. W. (2019). Big data and machine learning algorithms for health-care delivery. The Lancet Oncology, 20, 262–273.
  • Nguyen, N. H., Nguyen, D. T. A., Ma, B., et al. (2022). The application of machine learning and deep learning in sport: Predicting NBA players’ performance and popularity. Journal of Information and Telecommunication, 6, 217–235. 
  • Pushp, P., Dasharath, S., & Arati, C. (2022). Classification and applications of titanium and its alloys. Materials Today: Proceedings, 54, 537–542.
  • Revuru, R. S., Posinasetti, N. R., Vsn, V. R., et al. (2017). Application of cutting fluids in machining of titanium alloys—a review. The International Journal of Advanced Manufacturing Technology, 91, 2477–2498.
  • Schonlau, M., & Zou, R. Y. (2020). The random forest algorithm for statistical learning. The Stata Journal: Promoting Communications on Statistics and Stata, 20(1), 3–29. 
  • Schultheiss, F., Hägglund, S., & Ståhl, J. E. (2015). Modeling the cost of varying surface finish demands during longitudinal turning operations. The International Journal of Advanced Manufacturing Technology, 84, 1103–1114. 
  • Serra, R., & Chibane, H. (2010). Effects of cutting parameters during turning 100C6 steel. In EPJ Web of Conferences (pp. 1–8).
  • Subasi, A. (2020) Practical machine learning for data analysis using Python. Elsevier.
  • Thongpeth, W., Lim, A., Wongpairin, A., et al. (2021). Comparison of linear, penalized linear and machine learning models predicting hospital visit costs from chronic disease in Thailand. Informatics in Medicine Unlocked, 26, 100, 769–100, 776.
  • Uskov, V. L., Bakken, J. P., Putta, P., et al. (2021). Smart education: Predictive analytics of student academic performance using machine learning models in weka and Dataiku systems. In Proceedings of the Smart Innovation, Systems and Technologies Conference (pp. 3–17).
  • Witten, I. H., Frank, E., Hall, M. A., et al. (2016). Data mining: Practical machine learning tools and techniques. Morgan Kaufmann.