Estudio del efecto del polvo y estimación de la potencia nominal en un string fotovoltaicoColaboración con el XXIII Simposio Peruano de Energía Solar

  1. Angulo Abanto, José Rubén 1
  2. Calsi Silva, Brando Xavier 1
  3. Alfaro Collazos, Erick Felipe 2
  4. Conde Mendoza, Luis Ángel 1
  5. Emilio Muñoz Cerón
  6. Grieseler, Rolf 1
  7. Guerra Torres, Jorge Andrés 1
  8. Palomino Töfflinger, Jan Amaru 1
  9. Espinoza Paredes, Rafael Leonardo 2
  10. De la Casa Higueras, Juan 3
  1. 1 Departamento de Ciencias, Sección de Física, Pontificia Universidad Católica del Perú, Lima, Perú.
  2. 2 Centro de Energías Renovables, Universidad Nacional de Ingeniería,Lima, Perú.
  3. 3 Grupo IDEA, Departamento de Electrónica, Universidad de Jaén, Jaén, España.
Journal:
TECNIA

ISSN: 2309-0413 0375-7765

Year of publication: 2020

Volume: 30

Issue: 1

Pages: 27-33

Type: Article

DOI: 10.21754/TECNIA.V30I1.832 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: TECNIA

Abstract

The amount of dust deposited on the surface of a panel depends on the environmental parameters. These are random (eg. humidity, wind speed and ambient temperature) which makes it difficult to model them theoretically. This paper describes the effect of dust by calculating the derating factor (η_polvo) and modeling its dependence over time. To achieve this, an experimental campaign was carried out in three tandem (a-Si / µc-Si) of 1.15 kW controlled in the city of Lima, divided into two periods of time. In the first period, from 07.15.2016 to 04.07.2017, the three strings were cleaned twice per week. The nominal power was calculated for days with clear skies conditions. It was found that between each string there are slight differences or mismatches in the nominal power, which is considered to estimate a correction factor (k) in order to readjust the output power. In the second stage from 05.07.2017 to 05.07.2018, the powder was allowed to deposit naturally, studying the effect of the dust on the energy fall through the reduction factor. Understanding this factor will be of importance for the maintenance operations of the ropes determined in that specific environment.

Bibliographic References

  • [1] M. R. Maghami, H. Hizam, C. Gomes, M. A. Radzi, M. I. Rezadad, and S. Hajighorbani, “Power loss due to soiling on solar panel: A review,” Renew. Sustain. Energy Rev., vol. 59, pp. 1307–1316, 2016.
  • [2] M. Abderrezek and M. Fathi, “Experimental study of the dust effect on photovoltaic panels’ energy yield,” Sol. Energy, vol. 142, pp. 308–320, 2017.
  • [3] J. Tanesab, D. Parlevliet, J. Whale, and T. Urmee, “Dust Effect and its Economic Analysis on PV Modules Deployed in a Temperate Climate Zone,” Energy Procedia, vol. 100, pp. 65–68, 2016.
  • [4] E. F. Cuddihy, “Theoretical Considerations of Soil Retention,” Sol. Energy Mater., vol. 3, pp. 21–33, 1980.
  • [5] E. Y. T. Chen, L. Ma, Y. Yue, B. Guo, and H. Liang, “Measurement of dust sweeping force for cleaning solar panels,” Sol. Energy Mater. Sol. Cells, vol. 179, pp. 247–253, 2018.
  • [6]W. Javed, Y. Wubulikasimu, B. Figgis, and B. Guo, “Characterization of dust accumulated on photovoltaic panels in Doha, Qatar,” Sol. Energy, vol. 142, pp. 123–135, 2017.
  • [7] M. Adinoyi and S. Said, “Effect of dust accumulation on the power outputs of solar photovoltaic modules,” Renew. Energy, vol. 60, pp. 633–636, 2013.
  • [8] J. Montes-Romero et al., “Impact of soiling on the outdoor performance of CPV modules in Spain,” 15th Int. Conf. Conc. Photovolt. Syst., vol. 2149, p. 060004, 2019.
  • [9] H. A. Kazem and M. T. Chaichan, “The effect of dust accumulation and cleaning methods on PV panels’ outcomes based on an experimental study of six locations in Northern Oman,” Sol. Energy, vol. 187, pp. 30–38, 2019.
  • [10] M. Hussein, “Sustainable Regeneration Of Urban Green Areas In Egypt ’ S Desert Cities Sustainable Regeneration Of Urban Green Areas In Egypt’s Desert Cities Adopting Green Infrastructure Strategies In New Borg El-Arab City,” HafenCity University, 2018.
  • [11] F. Martínez-Moreno, E. Lorenzo, J. Muñoz, and R. Moretón, “On the testing of large PV arrays,” Prog. Photovoltaics Res. Appl., vol. 20, no. 1, pp. 100–105, 2012.
  • [12] C. R. Osterwald, “Translation of device performance measurements to reference conditions,” Sol. Cells, vol. 18, no. 3–4, pp. 269–279, 1986.
  • [13] F. Martinez, “Caracterizacion y Modelado de Grandes Centrales Fotovoltaicas,” tesis doctoral, Escuela Politécnica de Madrid, Universidad Politécnica de Madrid, Madrid, MAD, 2012.
  • [14] I. De la Parra, M. Muñoz, E. Lorenzo, M. García, J. Marcos, and F. Martínez-Moreno, “PV performance modelling: A review in the light of quality assurance for large PV plants,” Renew. Sustain. Energy Rev., vol. 78, no. November 2016, pp. 780–797, 2017.
  • [15] M. Jaszczur et al., “The field experiments and model of the natural dust deposition effects on photovoltaic module efficiency,” Environ. Sci. Pollut. Res., vol. 26, no. 9, pp. 8402–8417, 2019.
  • [16] A. A. Hachicha, I. Al-Sawafta, and Z. Said, “Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions,” Renew. Energy, vol. 141, pp. 287–297, 2019.
  • [17] V. Gupta, M. Sharma, R. Kumar, and K. N. D. Babu, “Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques,” Sol. Energy, vol. 191, pp. 596–622, 2019.
  • [18] I. Romero-Fiances, E. Muñoz-Cerón, R. Espinoza-Paredes, G. Nofuentes, and J. De La Casa, “Analysis of the performance of various pv module technologies in Peru,” Energies, vol. 12, no. 1, 2019.
  • [19] K. K. Ilse, B. W. Figgis, V. Naumann, C. Hagendorf, and J. Bagdahn, “Fundamentals of soiling processes on photovoltaic modules,” Renew. Sustain. Energy Rev., vol. 98, pp. 239–254, 2018.