Role of executive functions in the relations of state‐ and trait‐math anxiety with math performance
- Pelegrina, Santiago 1
- Martín‐Puga, M. Eva 1
- Lechuga, M. Teresa 1
- Justicia‐Galiano, M. José 1
- Linares, Rocío 1
- 1 Department of Psychology University of Jaén Jaén Spain
ISSN: 0077-8923, 1749-6632
Año de publicación: 2024
Tipo: Artículo
Otras publicaciones en: Annals of the New York Academy of Sciences
Resumen
The detrimental effect of math anxiety on math performance is thought to be mediated by executive functions. Previous studies have primarily focused on trait-math anxiety rather than state-math anxiety and have typically examined a single executive function rather than comprehensively evaluating all of them. Here, we used a structural equation modeling approach to concurrently determine the potential mediating roles of different executive functions (i.e., inhibition, switching, and updating) in the relationships between both state- and trait-math anxiety and math performance. A battery of computer-based tasks and questionnaires were administered to 205 university students. Two relevant results emerged. First, confirmatory factor analysis suggests that math anxiety encompassed both trait and state dimensions and, although they share substantial variance, trait-math anxiety predicted math performance over and above state-math anxiety. Second, working memory updating was the only executive function that mediated the relationship between math anxiety and math performance; neither inhibition nor switching played mediating roles. This calls into question whether some general proposals about the relationship between anxiety and executive functions can be extended specifically to math anxiety. We also raise the possibility that working memory updating or general cognitive difficulties might precede individual differences in math anxiety.
Referencias bibliográficas
- 10.1177/0963721416672463
- 10.1073/pnas.2115855119
- 10.1037/bul0000307
- 10.3102/0034654319843494
- 10.1007/s10648‐021‐09618‐5
- 10.3389/fpsyg.2019.01613
- 10.5951/jresematheduc.21.1.0033
- 10.1038/s41539‐021‐00095‐7
- 10.1080/00461520.2018.1447384
- 10.1111/nyas.14982
- 10.1371/journal.pone.0092563
- 10.3390/brainsci11121609
- 10.3389/fpsyg.2015.01404
- 10.1177/0956797613486989
- 10.5964/jnc.v5i3.204
- 10.1016/j.lindif.2020.101962
- 10.1080/02699931.2021.1955243
- 10.1016/j.jecp.2013.12.001
- 10.1080/02699931.2014.1002755
- 10.1016/j.cognition.2020.104271
- 10.1038/s41539‐023‐00156‐z
- 10.1016/j.cobeha.2016.04.011
- Dowker A., (2019), Mathematics Anxiety, pp. 62, 10.4324/9780429199981-4
- Cohen L. D., (2021), Heterogeneous Contributions to Numerical Cognition, pp. 311, 10.1016/B978-0-12-817414-2.00003-8
- 10.3758/s13415‐015‐0370‐7
- 10.3389/fpsyg.2015.01987
- 10.1080/02699939208409696
- 10.1017/CBO9781139174909
- 10.1080/13803395.2015.1066759
- 10.1016/j.paid.2003.09.029
- 10.3389/fpsyg.2016.00042
- 10.1371/journal.pone.0165644
- 10.3389/fpsyg.2021.798090
- 10.1037/a0034099
- 10.1111/bjep.12165
- 10.1016/j.lindif.2015.04.007
- 10.1177/0143034311427433
- 10.1371/journal.pone.0211283
- 10.1111/nyas.14722
- 10.1016/j.cedpsych.2021.101949
- 10.1007/s12144‐022‐02765‐0
- 10.1016/j.concog.2022.103298
- 10.1037/1528‐3542.7.2.336
- 10.1080/027249896392784
- 10.1006/cogp.1999.0734
- 10.1111/cdep.12059
- 10.1037/bul0000369
- 10.1016/j.edurev.2013.05.003
- 10.1016/j.lindif.2012.10.004
- 10.1111/ejn.15984
- 10.3758/s13415‐020‐00770‐z
- 10.1111/bjdp.12412
- 10.1016/j.lindif.2011.01.007
- 10.1023/A:1014578218041
- 10.1371/journal.pone.0099579
- 10.1080/02699931.2018.1435504
- 10.1038/s41598‐020‐76920‐7
- 10.1177/1747021817752094
- 10.1080/21622965.2017.1341836
- 10.1111/nyas.14747
- 10.1037/edu0000079
- 10.1016/j.lindif.2009.10.005
- 10.1016/j.paid.2010.08.019
- 10.1080/02699931.2015.1060194
- 10.3389/fpsyg.2020.00669
- 10.3389/fpsyg.2015.00328
- 10.1016/j.intell.2006.09.001
- Eysenck M. W., (2012), Cognition and Motivation, pp. 96, 10.1017/CBO9781139021463.008
- 10.1177/1073191103010002008
- 10.1177/1073191120980064
- 10.1080/07481756.1989.12022923
- 10.1016/j.lindif.2012.12.009
- 10.1111/1467‐8721.00196
- Spielberger C. D.(2012).State‐Trait Anxiety Inventory for Adults.https://doi.org/10.1037/t06496‐000
- Muñoz‐Sandoval A. Woodcock R. McGrew K. S. &Mather N.(2005).Batería III Woodcock−Muñoz: Pruebas de aprovechamiento [Woodcock−Muñoz III Tests of Achievement].
- Yuste H. C.(2006).Badyg‐E2. Bateria de Aptitudes Diferenciales y Generales. Renovado [Differential and General Aptitude Test Battery. Updated].
- 10.1037/xge0000333
- 10.1037/a0013843
- 10.3758/BF03196097
- 10.1037/0882‐7974.6.1.118
- 10.1007/s00426‐017‐0843‐0
- 10.1371/journal.pone.0211321
- 10.1037/h0043688
- 10.1177/001872086300500102
- 10.1037/0096‐3445.132.4.566
- 10.1037/0033‐295X.91.3.295
- Kline R. B., (2016), Principles and practice of structural equation modeling
- 10.1037/0096‐3445.133.1.101
- 10.18637/jss.v048.i02
- R Core Team. (2022).R: A language and environment for statistical computing.
- 10.1080/10705519909540118
- 10.1007/BF02296192
- 10.1037/bul0000160
- 10.1016/j.cortex.2016.04.023
- 10.1348/026151003321164627
- 10.1037/a0017729
- 10.1016/j.lindif.2016.02.006
- 10.1006/jecp.1999.2493
- 10.3390/jintelligence9030034
- 10.1016/j.jecp.2014.01.002
- 10.1016/j.jml.2010.02.001
- 10.1111/j.2044‐8279.2012.02081.x
- 10.1016/j.biopsycho.2012.03.007
- 10.1037/bul0000051
- 10.1111/j.1467‐9280.2006.01681.x
- 10.1037/0096‐3445.137.2.201
- 10.1037/a0025615
- 10.1037/edu0000355
- 10.1016/j.lindif.2017.11.014
- 10.1016/j.adolescence.2020.03.003
- 10.1016/j.cognition.2017.05.016
- 10.1177/0004944116653000
- 10.1037/edu0000222
- 10.1037/0278‐7393.33.6.983
- 10.1016/j.cognition.2009.09.013
- 10.1080/17470218.2010.533278
- 10.1111/nyas.14788
- 10.1016/j.lindif.2023.102316
- 10.1080/15366367.2014.929453
- 10.1037/xlm0000450