Geometric Characterization of the SOFC Electrodes Microporosity Using Fractal and Multifractal Analysis

  1. Díaz-Jiménez, Marina 1
  2. Pavón-Domínguez, Pablo 1
  3. Castro-García, Miguel 2
  4. Marín-Rueda, Juan Ramón 2
  1. 1 Department of Mechanical Engineering and Industrial Design, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real (Cádiz), Av. Universidad de Cádiz 10, 11519, Cádiz, Spain
  2. 2 Instituto de Investigación de Energías Renovables, Universidad de Castilla-La Mancha, Calle Investigación 1, 02006, Albacete, Spain
Actas:
INGEGRAF 2023: Advances in Design Engineering IV pp 214–224

ISSN: 2195-4356 2195-4364

ISBN: 9783031516221 9783031516238

Año de publicación: 2024

Páginas: 214-224

Tipo: Aportación congreso

DOI: 10.1007/978-3-031-51623-8_21 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Nowadays, fractal geometry is suitable for characterizing complex geometric shapes such as porous microstructures. For this purpose, the main objective of this work is to analyze images of the porous microstructures of a Lanthanum Strontium Manganite (LSM) electrode, belonging to a fuel cell, in order to describe its complex geometry. For this, it is necessary to establish consistent relationships between (multi-)fractal parameters and the microporosity of the cell microstructure. The box-counting method and the method of moments were used on the analysis of these images to extract the main fractal and multifractal parameters, respectively, as they are, the fractal Dimension, Df, and the generalized dimensions function, D(q), which allow study the microstructure. The results obtained show the robustness of the methods used in its application to the study of the porous microstructure of these ceramic materials. The main conclusions of the work are that small scales, δ = [1, 32], exhibit a monofractal behavior, characterized by a Df = 1,804 ± 0,042. Although, as the scale observation increases, a remarkable complexity in the microstructure of LSM stacks emerges, characterized by a degree of multifractality of ΔD(q) = 0,421.

Referencias bibliográficas

  • Wei W, Cai J, Hu X, Han Q (2015) An electrical conductivity model for fractal porous media. Geophys Res Lett 42(12):4833–4840. https://doi.org/10.1002/2015GL064460
  • Kong L, Ostadhassan M, Hou X, Mann M, Li C (2019) Microstructure characteristics and fractal analysis of 3D-printed sandstone using micro-CT and SEM-EDS. J Pet Sci Eng 1039–1048. https://doi.org/10.1016/j.petrol.2019.01.050
  • Yu B, Li J (2001) Some fractal characters of porous media. Fractals 9(3):365–372. https://doi.org/10.1142/S0218348X01000804
  • Mandelbrot BB (1983) The fractal geometry of nature, 3rd edn. W. H. Freeman, New York, USA. ISBN:9780716711865
  • Feder J (1988) Random walks and fractals. Fractals 163–183. Plenum Press, New York, USA. https://doi.org/10.1007/978-1-4899-2124-6_9
  • Young IM, Crawford JW (1991) The fractal structure of soil aggregates: its measurement and interpretation. J Soil Sci 42(2):187–192. https://doi.org/10.1111/j.1365-2389.1991.tb00400.x
  • Mwema FM, Akinlabi ET, Oladijo OP, Fatoba OS, Akinlabi SA, Tălu S (2020) Advances in manufacturing analysis: fractal theory in modern manufacturing. Mod Manuf Process 13–39. https://doi.org/10.1016/b978-0-12-819496-6.00002-6
  • Wang P et al (2016) Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China: evidence from SEM digital images and fractal and multifractal geometries. Mar Pet Geol 72:122–138. https://doi.org/10.1016/j.marpetgeo.2016.01.020
  • Barnsley MF (1993) Fractals everywhere, 2nd edn. Academic Press
  • Xia Y, Cai J, Perfect E, Wei W, Zhang Q, Meng Q (2019) Fractal dimension, lacunarity and succolarity analyses on CT images of reservoir rocks for permeability prediction. J Hydrol 579. https://doi.org/10.1016/j.jhydrol.2019.124198
  • Kravchenko AN, Boast CW, Bullock DG (1999) Multifractal analysis of soil spatial variability. Agron J 91(6):1033–1041. https://doi.org/10.2134/agronj1999.9161033x
  • Li W, Liu H, Song X (2015) Multifractal analysis of Hg pore size distributions of tectonically deformed coals. Int J Coal Geol 144–145:138–152. https://doi.org/10.1016/j.coal.2015.04.011
  • San José Martínez F, Martín MA, Caniego FJ, Tuller M, Guber A, Pachepsky Y, García-Gutiérrez C (2010) Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures. Geoderma 156(1–2):32–42. https://doi.org/10.1016/j.geoderma.2010.01.004
  • Grassberger P (1983) Generalized dimensions of strange attractors. Phys Lett A 97(6):227–230. https://doi.org/10.1016/0375-9601(83)90753-3
  • Hentschel HGE, Procaccia I (1983) The infinite number of generalized dimensions of fractals and strange attractors. Phys D 8(3):435–444. https://doi.org/10.1016/0167-2789(83)90235-X
  • Jouini MS, Vega S, Mokhtar EA (2011) Multiscale characterization of pore spaces using multifractals analysis of scanning electronic microscopy images of carbonates. Nonlinear Process Geophys 18(6):941–953. https://doi.org/10.5194/npg-18-941-2011
  • Posadas AND, Giménez D, Quiroz R, Protz R (2003) Multifractal characterization of soil pore systems. Soil Sci Soc Am J 67(5):1361–1369. https://doi.org/10.2136/sssaj2003.1361
  • Vázquez EV, Ferreiro JP, Miranda JGV, González AP (2008) Multifractal analysis of pore size distributions as affected by simulated rainfall. Vadose Zone J 7(2), 500–511. https://doi.org/10.2136/vzj2007.0011
  • Evertsz CJG, Mandelbrot BB (1992) Multifractal measures (Appendix b). In: Peitgen HO, Jurgens H, Saupe D (eds) Chaos and Fractals. Springer-Verlag, New York, USA
  • Ge X, Fan Y, Li J, Aleem Zahid M (2015) Pore structure characterization and classification using multifractal theory-an application in santanghu basin of Western China. J Petrol Sci Eng 127:297–304. https://doi.org/10.1016/j.petrol.2015.01.004
  • Tian Z, Wei W, Zhou S, Wood DA, Cai J (2021) Experimental and fractal characterization of the microstructure of shales from Sichuan basin, China. Energy and Fuels 35(5):3899–3914. https://doi.org/10.1021/acs.energyfuels.0c04027