The Thing (1982)un primer modelo de prediagnóstico para las infecciones y alteraciones de la fisiología

  1. Prieto-Gómez, Isabel 1
  2. Ramírez-Sánchez, Manuel 1
  3. Segarra-Robles, Ana Belén 1
  4. Suleiman-Martos, Nora 2
  5. García-Cózar, Francisco 3
  6. Domínguez-Vías, Germán 4
  1. 1 Área de Fisiología, Facultad de Ciencias Experimentales. Universidad de Jaén (España).
  2. 2 Departamento de Enfermería, Facultad de Ciencias de la Salud de Granada. Universidad de Granada (España).
  3. 3 Área de Inmunología, Facultad de Medicina. Universidad de Cádiz (España).
  4. 4 Departamento de Fisiología, Facultad de Ciencias de la Salud de Ceuta. Universidad de Granada (España).
Zeitschrift:
Revista de medicina y cine

ISSN: 1885-5210

Datum der Publikation: 2023

Ausgabe: 19

Nummer: 4

Seiten: 345-354

Art: Artikel

DOI: 10.14201/RMC.31185 DIALNET GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Revista de medicina y cine

Zusammenfassung

The Thing (1982) by John Carpenter represents an audiovisual challenge to think about the discovery of keys for the early detection of hostile infections. The search for quick and easy techniques for solving cases means the difference between survival and remaining suspicious for a group that tries to discover which of them are infected, and not end up transformed into «something else». This work will allow the student body to know the changes in the homeostatic balance that the relationship with microorganisms of different nature present in the blood would imply.

Bibliographische Referenzen

  • 1. Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The Healthy Human Blood Microbiome: Fact or Fiction? Front. Cell. Infect. Microbiol. 2019;9:148.
  • 2. Tedeschi GG, Amici D, Paparelli M. Incorporation of nucleosides and amino-acids in human erythrocyte suspensions: possible relation with a diffuse infection of mycoplasms or bacteria in the L form. Nature. 1969;222(5200):1285-6.
  • 3. Mitchell AJ, Gray WD, Schroeder M, Yi H, Taylor JV, Dillard RS, et al. Pleomorphic Structures in Human Blood Are Red Blood Cell-Derived Microparticles, Not Bacteria. PLoS One. 2016;11(10):e0163582.
  • 4. Martel J, Wu CY, Huang PR, Cheng WY, Young JD. Pleomorphic bacteria-like structures in human blood represent non-living membrane vesicles and protein particles. Sci. Rep. 2017;7(1):10650.
  • 5. Païssé S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, et al. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion. 2016;56(5):1138-1147.
  • 6. Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br. J. Dermatol. 2008;158(3):442-455.
  • 7. Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS. Biol. 2013;11(8):e1001631.
  • 8. Cook L, Reid KT, Häkkinen E, de Bie B, Tanaka S, Smyth DJ, et al. Induction of stable human FOXP3+ Tregs by a parasite-derived TGF-β mimic. Immunol. Cell. Biol. 2021;99(8):833-847.
  • 9. Münter S, Way M, Frischknecht F. Signaling during pathogen infection. Sci. STKE. 2006;2006(335):re5.
  • 10. Chen X, Zhou Q, Liu J, Zhou B, Wu X, Long L. Autoimmune manifestations of visceral leishmaniasis in Chinese patients. Ann. Palliat. Med. 2021;10(12):12699-12705.
  • 11. Richards EM, Li J, Stevens BR, Pepine CJ, Raizada MK. Gut Microbiome and Neuroinflammation in Hypertension. Circ. Res. 2022;130(3):401-417.
  • 12. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 2019;20(4):461-472.
  • 13. Andújar-Tenorio N, Prieto I, Cobo A, Martínez-Rodríguez AM, Hidalgo M, Segarra AB, et al. High fat diets induce early changes in gut microbiota that may serve as markers of ulterior altered physiological and biochemical parameters related to metabolic syndrome. Effect of virgin olive oil in comparison to butter. PLoS. One. 2022;17(8):e0271634.
  • 14. Martínez N, Prieto I, Hidalgo M, Segarra AB, Martínez-Rodríguez AM, Cobo A, et al. Refined versus Extra Virgin Olive Oil High-Fat Diet Impact on Intestinal Microbiota of Mice and Its Relation to Different Physiological Variables. Microorganisms. 2019;7(2):61.
  • 15. Prieto I, Hidalgo M, Segarra AB, Martínez-Rodríguez AM, Cobo A, Ramírez M, et al. Influence of a diet enriched with virgin olive oil or butter on mouse gut microbiota and its correlation to physiological and biochemical parameters related to metabolic syndrome. PLoS. One. 2018;13(1):e0190368.
  • 16. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65-74.
  • 17. Müller TH, Mohr H, Montag T. Methods for the detection of bacterial contamination in blood products. Clin Chem Lab Med. 2008;46(7):933-46.
  • 18. El Mehdaoui F, Benajiba M, Boulahdid S, El Hattimy F, Soulaymani A, Alami R. Skin flora and bacterial contamination of diversion pouch and recovered platelet components in Moroccan blood donors. Transfus. Med. 2020;30(5):384-390.
  • 19. Yamaguchi H, Yamada M, Uruma T, Kanamori M, Goto H, Yamamoto Y, et al. Prevalence of viable Chlamydia pneumoniae in peripheral blood mononuclear cells of healthy blood donors. Transfusion. 2004;44(7):1072-1078.
  • 20. Thwaites GE, Gant V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus? Nat. Rev. Microbiol. 2011;9(3):215-222.
  • 21. Artois M. Epidemiology of contagious diseases, ecology of mammals, health, management and conservation biology: concluding remarks. Rev. Sci. Tech. 1993;12(1):203-234.
  • 22. Herrera J, Nunn CL. Behavioural ecology and infectious disease: implications for conservation of biodiversity. Phil. Trans. R. Soc. B. 2019;374(1781):20180054.