Variations in spatiotemporal parameters in young and older women while walking at different speeds

  1. Cherubini, Domenico
  2. Latorre Roman, Pedro Angel
  3. Aragón Vela, Jerónimo 1
  4. Soto Hermoso, Víctor Manuel 1
  1. 1 Department of Physiology, Faculty of Sports Sciences, University of Granada
Revista:
Cultura, ciencia y deporte

ISSN: 1696-5043

Año de publicación: 2023

Volumen: 18

Número: 57

Páginas: 11-19

Tipo: Artículo

DOI: 10.12800/CCD.V18I57.1940 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cultura, ciencia y deporte

Objetivos de desarrollo sostenible

Resumen

The relationship between spatial-temporal parameters of walking have been widely described in literaturealthough this is still unclear, particularly when changes in walking speed occurred. This study aims to investigatethis relationship in healthy women of different ages, while walking at different speeds. Two groups of healthywomen (25 young and 22 elderly) walked at “comfortable” and “fast” speeds. Stride length and frequency, pluswalking speed data were recorded. Their relationship was assessed using bivariate regression analysis and Pearson’scorrelation. Both groups showed that increasing velocity, increased significantly stride length and frequency,walking comfortably. Nevertheless, differences between groups were highlighted during fast walking. The elderlymaintains a similar walking pattern though reducing the correlation coefficient between the parameters. Whilethe younger shows significant correlation only between stride frequency and velocity. Concerning stride lengthand frequency relationship, both groups exhibit different behaviors between the observed walking speeds. Inconclusion, these results suggest that younger and older women increase walking speed using a pattern only whilstthe effort is perceived as comfortable. Identifying this breaking point in the motor patterns used could help toidentify early possible frailties in older people as well as assess the residual state of their functional capacities.

Referencias bibliográficas

  • Almarwani, M., VanSwearingen, J.M., Perera, S., Sparto, P.J., & Brach, J.S. (2016). Challenging the motor control of walking: Gait variability during slower and faster pace walking conditions in younger and older adults. Archives of Gerontology and Geriatrics, 66, 54–61. https:// doi.org/10.1016/j.archger.2016.05.001
  • Almarwani, M., Perera, S., VanSwearingen, J.M., Sparto, P.J., & Brach, J.S. (2016). The test–retest reliability and minimal detectable change of spatial and temporal gait variability during usual over-ground walking for younger and older adults. Gait & Posture, 44, 94–99. https://doi.org/10.1016/j.gaitpost.2015.11.014
  • Blanke, D.J., & Hageman, P.A. (1989). Comparison of gait of young men and elderly men. Physical Therapy, 69, 144- 148. https://doi.org/10.1093/ptj/69.2.144
  • Brenière, Y. (2003). Differential method of characterizing gait strategies from step length and frequencies: strategy of velocity modulation. Journal of Motor Behavior, 35(3), 215-220. https://doi.org/10.1080/00222890309602135
  • Cherubini, D., Pecoraro, F., Mazzà, C., & Cappozzo, A. (2005). Stride length and stride frequency modulation in young and elderly subjects. Proceeding of 10th Annual Congress of the European College of Sport Science, Belgrado, Serbia
  • Craig, J.J., Bruetsch, A.P., & Huisinga, J.M. (2019). Coordination of trunk and foot acceleration during gait is affected by walking velocity and fall history in elderly adults. Aging Clinical and Experimental Research, 31(7), 943–950. https://doi.org/10.1007/s40520-018- 1036-4
  • Crowninshield, R.D., Brand, R.A., & Johnston, R.C. (1978). The effects of walking velocity and age on hip kinematics and kinetics. Clinical Orthopaedics and Related Research, (132), 140-144.
  • Danion, F., Varraine, E., Bonnard, M., & Pailhous, J. (2003). Stride variability in human gait: the effect of stride frequency and stride length. Gait & Posture, 18(1), 69- 77. https://doi.org/10.1016/S0966-6362(03)00030-4
  • Della Croce, U., & Cappozzo, A. (2000). A spot-check for estimating stereo-photogrammetric errors. Medical & Biological Engineering & Computing, 38, 260-266. https:// doi.org/10.1007/bf02347045
  • Dingwell, J.B., Cusumano, J.P., Cavanagh, P.R., & Sternad, D. (2001). Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. Journal of Biomechanical Engineering, 123(1), 27–32. https://doi.org/10.1115/1.1336798
  • Egerton, T., Danoudis, M., Huxham, F., & Iansek, R. (2011). Central gait control mechanisms and the stride length – cadence relationship. Gait & Posture, 34(2), 178–182. https://doi.org/10.1016/j.gaitpost.2011.04.006
  • Elble, R.J., Sienko-Thomas, S., Higgins, C., & Colliver, J. (1991). Stride–dependent changes in gait of older people. Journal of Neurology, 238(1), 1-5. https://doi. org/10.1007/bf00319700
  • Gamwell, H.E., Wait, S.O., Royster, J.T., Ritch, B.L., Powell, S.C., & Skinner, J.W. (2022). Aging and Gait Function: Examination of Multiple Factors that Influence Gait Variability. Gerontology and Geriatric Medicine, 8, 1-10. https://doi.org/10.1177/23337214221080304
  • Goldie, P.A., Matyas, T.A., & Evans, O.M. (2001). Gait after stroke: initial deficit and changes in temporal patterns for each gait phase. Archives of Physical Medicine and Rehabilitation, 82(8), 1057-1065. https://doi. org/10.1053/apmr.2001.25085
  • Grieve, D.W., & Gear, R.I. (1966). The relationship between length of stride, step frequency, time of swing and speed of walking for children and adults. Ergonomics, 9(5), 379-399. https://doi.org/10.1080/00140136608964399
  • Hageman, P.A., & Blanke, D.J. (1986). Comparison of gait of young women and elderly women. Physical Therapy, 66(9), 1382-1387. https://doi.org/10.1093/ ptj/66.9.1382
  • Hausdorff, J.M., Mitchell, S.L., Firtion, R., Peng, C.K., Cudkowicz, M.E, Wei, J.Y., & Goldberger, A.L. (1997). Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. Journal of Applied Physiology, 82(1), 262-9. https://doi. org/10.1152/jappl.1997.82.1.262
  • Herssens, N., Verbecque, E., Hallemans, A., Vereeck, L., Van Rompaey, V., & Saeys, W. (2018). Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait & Posture, (64), 181–190. https://doi.org/10.1016/j. gaitpost.2018.06.012
  • Hirasaki, E., Moore, S.T., Raphan, T., & Cohen, B. (1999). Effects of walking velocity on vertical head and body movements during locomotion. Experimental Brain Research, 127(2), 117-130. https://doi.org/10.1007/ s002210050781
  • Hof, A.L. (1996). Scaling gait data to body size. Gait & Posture, 4(3), 222-223. https://doi.org/10.1016/0966- 6362(95)01057-2
  • Hof, A.L., & Zijlstra, W. (1997). Comment on normalization of temporal-distance parameters in pediatric gait. Journal of Biomechanics, 30(3), 299-301. https://doi. org/10.1016/S0021-9290(96)00126-1
  • Hurt, C.P., Rosenblatt, N., Crenshaw, J.R., & Grabiner, M.D. (2010). Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults. Gait & Posture, 31(4), 461– 464. https://doi.org/10.1016/j.gaitpost.2010.02.001
  • Jordan, K., Challis, J.H., & Newell, K.M. (2007). Walking speed influences on gait cycle variability. Gait & Posture, 26(1), 128-134. https://doi.org/10.1016/j. gaitpost.2006.08.010
  • Kressig, R.W., Gregor, R.J., Oliver, A., Waddell, D., Smith, W., O’Grady, M., & Wolf, S.L. (2004). Temporal and spatial features of gait in older adults transitioning to frailty Gait & Posture, 20(1), 30-35. https://doi.org/10.1016/ S0966-6362(03)00089-4
  • Magnani, P.E., Campos Freire, R.J., Zanellato, N.F.G., Baena Genovez, M., Camargo Alvarenga, I., & Carvalho de Abreu, D.C. (2019). The influence of aging on the spatial and temporal variables of gait during usual and fast speeds in older adults aged 60 to 102 years. Human Movement Science, 68, 1-14. https://doi.org/10.1016/j. humov.2019.102540
  • Malatesta, D., Simar, D., Dauvilliers, Y., Candau, R., Saad, H., Préfaut, C., & Caillaud, C. (2004). Aerobic determinants of the decline in preferred walking speed in healthy, active 65- and 80-year-olds. Pflügers Archiv-European Journal of Physiology, 447(6), 915–921. http://doi. org/10.1007/s00424-003-1212-y
  • Maruyama, H., & Nagasaki, H. (1992). Temporal variability in the phase durations during treadmill walking. Human Movement Science, 11(3), 335-348. https://doi. org/10.1016/0167-9457(92)90004-U
  • Montes-Alguacil, J., Paez-Moguer, J., Jimenez Cebrian, A.M., Muñoz, B.A., Gijon-Nogueron, G., & Morales-Asencio, J.M. (2019). The influence of childhood obesity on spatio-temporal gait parameters. Gait & Posture, 71, 69–73. https://doi.org/10.1016/j.gaitpost.2019.03.031
  • Osoba, M.Y., Rao, A.K., Sunil, K.A., & Lalwani, A.K. (2019). Balance and gait in the elderly: A contemporary review. Otology, Neurotology, and Neuroscience, 4(1), 143–153. https://doi.org/10.1002/lio2.252
  • Owings, T.M., & Grabiner, M.D. (2004). Variability of step kinematics in young and older adults. Gait & Posture, 20(1), 26-29. https://doi.org/10.1016/S0966- 6362(03)00088-2
  • Pecoraro, F., Mazzà, C., Zok, M., & Cappozzo, A. (2006). Assessment of level-walking aperiodicity. Journal of NeuroEngineering and Rehabilitation, 3(1), 1-28. https:// doi.org/10.1186/1743-0003-3-28
  • Ricciardi, C., Amboni, M., De Santis, C., Improta, G., Volpe, G., Iuppariello, L., Ricciardelli, G., D’Addio, G., Vitale, C., Barone, P., & Cesarelli, M. (2019). Using Gait Analysis’ Parameters to Classify Parkinsonism: A Data Mining Approach. Computer Methods and Programs in Biomedicine, 180, 1-17. https://doi.org/10.1016/j. cmpb.2019.105033
  • Saunders, J.B., Inman, V.T., & Eberhart, H.D. (1953). The major determinants in normal and pathological gait. The Journal of bone and joint surgery, 35A(3), 543-558.
  • Savica, R., Wennberg, A.M.V., Hagen, C., Edwards, K., Roberts, R.O., Hollman, J.H., & Mielke, M.M. (2016). Comparison of Gait Parameters for Predicting Cognitive Decline: The Mayo Clinic Study of Aging. Journal of Alzheimer’s Disease, 55(2), 559–567. https://doi.org/10.3233/jad- 160697
  • Shkuratova, N., Morris, M.E., & Huxham, F. (2004). Effects of age on balance control during walking. Archives of Physical Medicine and Rehabilitation, 85(4), 582-588. https://doi.org/10.1016/j.apmr.2003.06.021
  • Smith, A.J., & Lemaire, E.D. (2018). Temporal-spatial gait parameter models of very slow walking. Gait & Posture, 61, 125-129. https://doi.org/10.1016/j. gaitpost.2018.01.003
  • Stansfield, B.W., Hillman, S.J., Hazlewood, M.E., & Robb, J.E. (2006). Regression analysis of gait parameters with speed in normal children walking at self-selected speeds. Gait & Posture, 23(3), 288-294. https://doi. org/10.1016/j.gaitpost.2005.03.005
  • van der Linden, M.L., Kerr, A.M., Hazlewood, M.E., Hillman, S.J., & Robb, J.E. (2002). Kinematic and kinetic gait characteristics of normal children walking at a range of clinically relevant speeds. Journal of Pediatric Orthopaedics, 22(6), 800-806. http://doi. org/10.1097/01241398-200211000-00021
  • Vaughan, C.L., Langerak, N.G., & O’Malley, M.J. (2003). Neuromaturation of human locomotion revealed by non-dimensional scaling. Experimental Brain Research, 153(1), 123-127. https://doi.org/10.1007/s00221-003- 1635-x