Investigation of Plasticity Effects on Growing Fatigue Cracks Using the CJP Model of Crack Tip Fields

  1. Vasco-Olmo, José Manuel 1
  2. Camacho-Reyes, Alonso 1
  3. Gómez Gonzales, Giancarlo Luis 1
  4. Díaz, Francisco 1
  1. 1 Departamento de Ingeniería Mecánica y Minera, University of Jaén, 23071 Jaén, Spain
Revista:
Materials

ISSN: 1996-1944

Año de publicación: 2023

Volumen: 16

Número: 17

Páginas: 5744

Tipo: Artículo

DOI: 10.3390/MA16175744 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materials

Resumen

A growing fatigue crack gives rise to a plastic enclave that envelops the crack and can exert a shielding effect on the crack from the global elastic stress field driving fatigue propagation. This work presents the potential of the CJP model of crack tip fields to investigate the plasticity-induced shielding effects on growing fatigue cracks as well as its ability to characterise the size and shape of the plastic zone generated at the tip of a growing fatigue crack. The model was specifically developed to consider the influence of the plastic enclave generated around a fatigue crack on the surrounding elastic material. Different aspects related to fracture mechanics and its implications for fatigue crack growth have been investigated, namely plasticity-induced crack shielding, the retardation effect induced on fatigue crack growth due to the application of an overload and the estimate of the size and shape of the crack tip plastic zone. The model has been successfully applied by analysing displacement fields experimentally measured by DIC in different CT specimens made of 2024-T3 aluminium alloy and commercially pure titanium. Results presented in this work intend to contribute to a better understanding of the shielding effects during fatigue crack growth.

Referencias bibliográficas

  • Elber, (1970), Eng. Fract. Mech., 2, pp. 37, 10.1016/0013-7944(70)90028-7
  • Pippan, (2017), Fatigue Fract. Eng. Mater. Struct., 40, pp. 471, 10.1111/ffe.12578
  • Paris, (1963), J. Basic. Eng., 85, pp. 528, 10.1115/1.3656900
  • Cloud, G. (1998). Optical Methods of Engineering Analysis, Cambridge University Press. [1st ed.].
  • Patterson, (2009), J. Strain Anal. Eng. Des., 44, pp. 621, 10.1243/03093247JSA515
  • Patterson, (2016), Int. J. Fatigue, 8, pp. 117
  • Zanganeh, (2013), Strain, 49, pp. 102, 10.1111/str.12017
  • Robles, (2023), Int. J. Fatigue, 166, pp. 107279, 10.1016/j.ijfatigue.2022.107279
  • Sutton, M.A., Orteu, J.J., and Schreier, H.W. (2009). Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, Springer Science + Business Media. [1st ed.].
  • Anderson, T.L. (2017). Fracture Mechanics: Fundamentals and Applications, Taylor & Francis Group. [4th ed.].
  • Williams, (1957), J. Appl. Mech., 24, pp. 109, 10.1115/1.4011454
  • Muskhelishvili, N.I. (1977). Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff International Publishing. [1st ed.].
  • Christopher, (2008), Int. J. Fract., 148, pp. 361, 10.1007/s10704-008-9209-3
  • Ramesh, (1997), Eng. Fract. Mech., 56, pp. 25, 10.1016/S0013-7944(96)00098-7
  • Nurse, (1993), Fatigue Fract. Eng. Mater. Struct., 16, pp. 1339, 10.1111/j.1460-2695.1993.tb00743.x
  • James, (2013), Int. J. Fatigue, 46, pp. 4, 10.1016/j.ijfatigue.2012.04.015
  • Yates, (2010), Eng. Fract. Mech., 77, pp. 2063, 10.1016/j.engfracmech.2010.03.025
  • Shterenlikht, (2008), J. Strain Anal. Eng. Des., 43, pp. 769, 10.1243/03093247JSA419
  • Martin, (1996), Mater. Charact., 37, pp. 105, 10.1016/S1044-5803(96)00074-5
  • Carrera, (2022), Fatigue Fract. Eng. Mater. Struct., 45, pp. 2086, 10.1111/ffe.13705
  • Zhang, (2011), Fatigue Fract. Eng. Mater. Struct., 34, pp. 717, 10.1111/j.1460-2695.2011.01567.x
  • Patki, (2010), Fatigue Fract. Eng. Mater. Struct., 33, pp. 809, 10.1111/j.1460-2695.2010.01471.x
  • Yang, (2012), Proc. R. Soc. A, 468, pp. 2399, 10.1098/rspa.2011.0682
  • James, (2003), Eng. Fract. Mech., 70, pp. 2473, 10.1016/S0013-7944(02)00273-4
  • Pacey, (2005), Exp. Mech., 45, pp. 42, 10.1007/BF02428989
  • Tada, H., Paris, P.C., and Irwin, G.R. (2000). The Stress Analysis of Cracks Handbook, The American Society of Mechanical Engineers. [3rd ed.].
  • (2000). Standard Test Method for Measurement of Fatigue Crack Growth Rates. Standard No. ASTM E 647-00.
  • Paralta, (2018), Theor. Appl. Fract. Mech., 98, pp. 72, 10.1016/j.tafmec.2018.09.010
  • (2023, July 06). World-Class 2D Digital Image Correlation. Available online: http://www.correlatedsolutions.com/vic-2d/.
  • Sanford, (1979), Eng. Fract. Mech., 11, pp. 621, 10.1016/0013-7944(79)90123-1
  • Singh, A.K. (2010). Mechanics of Solids, Prentice-Hall of India. [2nd ed.].
  • Taylor, (1931), Philos. Trans. R. Soc. A, 230, pp. 323
  • Ritchie, (1988), Mater. Sci. Eng. A, 16, pp. 15, 10.1016/0025-5416(88)90547-2