Tree growth algorithm for parameter identification of proton exchange membrane fuel cell models
- Hamdy M. Sultan 1
- Ahmed S. Menesy 1
- Salah Kamel 2
- Francisco Jurado 3
-
1
Minia University
info
-
2
Chongqing University
info
-
3
Universidad de Jaén
info
ISSN: 1989-1660
Año de publicación: 2020
Volumen: 6
Número: 2
Páginas: 101-111
Tipo: Artículo
Otras publicaciones en: IJIMAI
Resumen
Demonstrating an accurate mathematical model is a mandatory issue for realistic simulation, optimization and performance evaluation of proton exchange membrane fuel cells (PEMFCs). The main goal of this study is to demonstrate a precise mathematical model of PEMFCs through estimating the optimal values of the unknown parameters of these cells. In this paper, an efficient optimization technique, namely, Tree Growth Algorithm (TGA) is applied for extracting the optimal parameters of different PEMFC stacks. The total of the squared deviations (TSD) between the experimentally measured data and the estimated ones is adopted as the objective function. The effectiveness of the developed parameter identification algorithm is validated through four case studies of commercial PEMFC stacks under various operating conditions. Moreover, comprehensive comparisons with other optimization algorithms under the same study cases are demonstrated. Statistical analysis is presented to evaluate the accuracy and reliability of the developed algorithm in solving the studied optimization problem.
Referencias bibliográficas
- A. H. Elkasem, S. Kamel, A. Rashad, and F. J. Melguizo, “Optimal Performance of Doubly Fed Induction Generator Wind Farm Using Multi-Objective Genetic Algorithm,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 5, no. 5, pp. 48-53, 2019.
- Y. Ibrahim, S. Kamel, A. Rashad, L. Nasrat, and F. Jurado, “Performance Enhancement of Wind Farms Using Tuned SSSC Based on Artificial Neural Network,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 5, no. 7, pp. 118-124, 2019.
- W. Ahme, A. Selim, S. Kamel, J. Yu, and F. J. Melguizo, “Probabilistic Load Flow Solution Considering Optimal Allocation of SVC in Radial Distribution System,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 5, no. 3, pp. 152-161, 2018.
- S. Kamel and H. Youssef, “Voltage Stability Enhancement Based on Optimal Allocation of Shunt Compensation Devices Using Lightning Attachment Procedure Optimization,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 5, no. 7, pp. 125-134, 2019.
- A. Selim, S. Kamel, L. Nasrat, and F. Jurado, “Voltage Stability Assessment of Radial Distribution Systems Including Optimal Allocation of Distributed Generators,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 1, pp. 32-40, 2020.
- J. Larminie, A. Dicks, and M. S. McDonald, Fuel cell systems explained. J. Wiley Chichester, UK, 2003.
- T. Manikandan and S. Ramalingam, “A review of optimization algorithms for the modeling of proton exchange membrane fuel cell,” Journal of Renewable and Sustainable Energy, vol. 8, no. 3, p. 034301, 2016.
- A. Shamel and N. Ghadimi, “Hybrid PSOTVAC/BFA technique for tuning of robust PID controller of fuel cell voltage,” Indian Journal of Chemical Technology, vol. 23, no.3, pp. 171-178, 2016.
- H.-W. Wu, “A review of recent development: Transport and performance modeling of PEM fuel cells,” Applied Energy, vol. 165, pp. 81-106, 2016.
- J. C. Amphlett, R. F. Mann, B. A. Peppley, P. R. Roberge, and A. Rodrigues, “A model predicting transient responses of proton exchange membrane fuel cells,” Journal of Power sources, vol. 61, no. 1-2, pp. 183-188, 1996.
- S. V. Puranik, A. Keyhani, and F. Khorrami, “Neural network modeling of proton exchange membrane fuel cell,” IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 474-483, 2010.
- C. E. Damian-Ascencio, A. Saldaña-Robles, A. Hernandez-Guerrero, and S. Cano-Andrade, “Numerical modeling of a proton exchange membrane fuel cell with tree-like flow field channels based on an entropy generation analysis,” Energy, vol. 133, pp. 306-316, 2017.
- A. Kheirandish, F. Motlagh, N. Shafiabady, M. Dahari, and A. K. A. Wahab, “Dynamic fuzzy cognitive network approach for modelling and control of PEM fuel cell for power electric bicycle system,” Applied energy, vol. 202, pp. 20-31, 2017.
- Y. Li, J. Yang, and J. Song, “Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles,” Renewable and Sustainable Energy Reviews, vol. 67, pp. 160- 172, 2017.
- G. Zhang, L. Fan, J. Sun, and K. Jiao, “A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties,” International Journal of Heat and Mass Transfer, vol. 115, pp. 714-724, 2017.
- K. Priya, K. Sathishkumar, and N. Rajasekar, “A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling,” Renewable and Sustainable Energy Reviews, vol. 93, pp. 121-144, 2018.
- L. Zhang and N. Wang, “Application of coRNA-GA based RBF-NN to model proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, vol. 43, no. 1, pp. 329-340, 2018.
- F. Bader, E.-M. Schön, and J. Thomaschewski, “Heuristics Considering UX and Quality Criteria for Heuristics,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 4, no. 6, pp. 48-53, 2017.
- S. Arora and S. Singh, “An Effective Hybrid Butterfly Optimization Algorithm with Artificial Bee Colony for Numerical Optimization,” International Journal of Interactive Multimedia and Artificial Intelligence, vol. 4, no. 4, pp. 14-21, 2017.
- Z. J. Mo, X. J. Zhu, L. Y. Wei, and G. Y. Cao, “Parameter optimization for a PEMFC model with a hybrid genetic algorithm,” International Journal of Energy Research, vol. 30, no. 8, pp. 585-597, 2006.
- M. Ye, X. Wang, and Y. Xu, “Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization,” International journal of hydrogen energy, vol. 34, no. 2, pp. 981-989, 2009.
- W. Gong and Z. Cai, “Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution,” Energy, vol. 59, pp. 356-364, 2013.
- Z. Sun, N. Wang, Y. Bi, and D. Srinivasan, “Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm,” Energy, vol. 90, pp. 1334-1341, 2015.
- A. Askarzadeh and A. Rezazadeh, “A grouping-based global harmony search algorithm for modeling of proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, vol. 36, no. 8, pp. 5047-5053, 2011.
- C. Dai, W. Chen, Z. Cheng, Q. Li, Z. Jiang, and J. Jia, “Seeker optimization algorithm for global optimization: a case study on optimal modelling of proton exchange membrane fuel cell (PEMFC),” International Journal of Electrical Power and Energy Systems, vol. 33, no. 3, pp. 369-376, 2011.
- A. Fathy and H. Rezk, “Multi-verse optimizer for identifying the optimal parameters of PEMFC model,” Energy, vol. 143, pp. 634-644, 2018.
- L. Zhang and N. Wang, “An adaptive RNA genetic algorithm for modeling of proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, vol. 38, no. 1, pp. 219-228, 2013.
- S. Xu, Y. Wang, and Z. Wang, “Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method,” Energy, vol. 173, pp. 457-467, 2019.
- M. Ali, M. El-Hameed, and M. Farahat, “Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer,” Renewable energy, vol. 111, pp. 455-462, 2017.
- O. E. Turgut and M. T. Coban, “Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization– Differential Evolution algorithm,” Ain Shams Engineering Journal, vol. 7, no. 1, pp. 347-360, 2016.
- Y. Chen and N. Wang, “Cuckoo search algorithm with explosion operator for modeling proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, vol. 44, no. 5, pp. 3075-3087, 2019.
- M. Guarnieri, E. Negro, V. Di Noto, and P. Alotto, “A selective hybrid stochastic strategy for fuel-cell multi-parameter identification,” Journal of Power Sources, vol. 332, pp. 249-264, 2016.
- A. Askarzadeh and A. Rezazadeh, “A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer,” International Journal of Energy Research, vol. 37, no. 10, pp. 1196-1204, 2013.
- A. A. El-Fergany, “Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser,” IET Renewable Power Generation, vol. 12, no. 1, pp. 9-17, 2017.
- A. S. Menesy, H. M. Sultan, A. Selim, M. G. Ashmawy, and S. Kamel, “Developing and Applying Chaotic Harris Hawks Optimization Technique for Extracting Parameters of Several Proton Exchange Membrane Fuel Cell Stacks,” IEEE Access, vol. 8, no. 1, pp. 1146-1159, 2020.
- A. S. Menesy, H. M. Sultan, A. Korashy, M. G. Ashmawy, and S. Kamel, “Effective Parameter Extraction of Different Polymer Electrolyte Membrane Fuel Cell Stack Models Using a Modified Artificial Ecosystem Optimization Algorithm,” IEEE Access, vol. 8, no. 1, pp. 31892 - 31909, 2020.
- A. Cheraghalipour and M. Hajiaghaei-Keshteli, “Tree growth algorithm (TGA): An effective metaheuristic algorithm inspired by trees behavior,” - 111 - Regular Issue in 13th International Conference on Industrial Engineering, 2017, vol. 13: Scientific Information Databases Babolsar.
- I. Strumberger, M. Minovic, M. Tuba, and N. Bacanin, “Performance of Elephant Herding Optimization and Tree Growth Algorithm Adapted for Node Localization in Wireless Sensor Networks,” Sensors, vol. 19, no. 11, p. 2515, 2019.
- H. H. EL-Tamaly, H. M. Sultan, and M. Azzam, “Control and Operation Of a Solid Oxide Fuel-Cell Power Plant In an Isolated System,” in 9 th International Conference on Electrical Engineering ( 9 thICEENG), Military Technical College Kobry El-Kobbah, Cairo, Egypt, 2014, pp. 1-13.
- C. Panos, K. Kouramas, M. Georgiadis, and E. Pistikopoulos, “Modelling and explicit model predictive control for PEM fuel cell systems,” Chemical Engineering Science, vol. 67, no. 1, pp. 15-25, 2012.
- Y. Rao, Z. Shao, A. H. Ahangarnejad, E. Gholamalizadeh, and B. Sobhani, “Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model,” Energy conversion and management, vol. 182, pp. 1-8, 2019.
- J. Too, A. Abdullah, N. Mohd Saad, and N. Mohd Ali, “Feature Selection Based on Binary Tree Growth Algorithm for the Classification of Myoelectric Signals,” Machines, vol. 6, no. 4, p. 65, 2018.
- J. M. Corrêa, F. A. Farret, L. N. Canha, and M. G. Simoes, “An electrochemical-based fuel-cell model suitable for electrical engineering automation approach,” IEEE Transactions on industrial electronics, vol. 51, no. 5, pp. 1103-1112, 2004.