Characterizing Probability Problems Posed in University Entrance Tests in Andalucia
- Batanero, Carmen
- López-Martín, María del Mar
- Arteaga, Pedro
- Gea, María M. 1
-
1
Universidad de Granada
info
ISSN: 2520-8322, 2520-8330
ISBN: 9783319728704, 9783319728711
Datum der Publikation: 2018
Seiten: 103-123
Art: Buch-Kapitel
Bibliographische Referenzen
- Batanero, C., & Borovcnik, M. (2016). Statistics and probability in high school. Rotterdam: Sense Publishers.
- Böcherer-Linder, K., Eichler, A., & Vogel, M. (2015). Understanding conditional probability through visualization. In H. Oliveira, A. Henriques, A. P. Canavarro, C. Monteiro, C. Carvalho, J. P. Ponte, R. T. Ferreira, & S. Colaço (Eds.), Proceedings of the International Conference Turning data into knowledge: New opportunities for statistics education (pp. 14–23). Lisbon, Portugal: Instituto de Educação da Universidade de Lisboa.
- Batanero, C., Serrano, L., & Garfield, J. B. (1996). Heuristics and biases in secondary students’ reasoning about probability. In L. Puig, & A. Gutiérrez (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 43-50). Valencia, Spain: PME group.
- Borovcnik, M. (2012). Multiple perspectives on the concept of conditional probability. Avances de Investigación en Educación Matemática, 2, 5–27.
- Contreras, J. M. (2011). Evaluación de conocimientos y recursos didácticos en la formación de profesores sobre probabilidad condicional (Assessing knowledge and didactic resources in training teachers to teach conditional probability). PhD dissertation. University of Granada, Spain.
- Contreras, J. M., López-Martín, M. M., Arteaga, P., & Carretero, M. (2015). Probability content in the entrance to university tests in Andalucía. In H. Oliveira, A. Henriques, A, Canavarro, C. Monteiro, C. Carvalho, J. P. Ponte, R. Ferreira, & S. Colaço (Eds.), Proceedings of the International Conference. Turning data into knowledge: New opportunities for statistics education (pp. 24–33). Lisbon: Instituto de Educaçao da Universidade de Lisboa.
- Díaz, C. (2004). Elaboración de un instrumento de evaluación del razonamiento condicional (Building an instrument to assess conditional probability reasoning). Master’s Thesis. University of Granada, Spain.
- Díaz, C., & Batanero, C. (2009). Students’ formal knowledge and biases in conditional probability reasoning. Do they improve with instruction? International Electronic Journal of Mathematics Education, 4(2), 131–162.
- Díaz, C., & de la Fuente, I. (2007). Assessing students’ difficulties with conditional probability and Bayesian reasoning. International Electronic Journal of Mathematics Education, 2(3), 128–148.
- Díaz, C., Batanero, C., & Contreras, J. M. (2010). Teaching independence and conditional probability. Boletín de Estadística e Investigación Operativa, 26(2), 149–162.
- Díaz, C., Contreras, J. M., Batanero, C., & Roa, R. (2012). Evaluación de sesgos en el razonamiento sobre probabilidad condicional en futuros profesores de educación secundaria (Assessing reasoning biases in conditional probability of prospective secondary school teachers). Bolema, 26(22), 1207–1226.
- Drijvers, P. G., Godino, J. D., Godino, F. V., & Trouche, L. (2013). One episode, two lenses. A reflective analysis of student learning with computer algebra from instrumental and onto-semiotic perspectives. Educational Studies in Mathematics, 82, 23–49.
- Falk, R. (1986). Conditional probabilities: Insights and difficulties. In R. Davidson & J. Swift (Eds.), Proceedings of the Second International Conference on Teaching Statistics (pp. 292–297). Victoria, Canada: International Statistical Institute.
- Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007). Guidelines for assessment and instruction in statistics education (GAISE) report: A Pre–K–12 curriculum framework. Alexandria, VA: American Statistical Association. http://www.amstat.org/Education/gaise/ . Accessed 14 April 2017.
- Gigerenzer, G. (1994). Why the distinction between single-event probabilities and frequencies is important for psychology (and vice-versa). In G. Wright & P. Ayton (Eds.), Subjective probability (pp. 129–161). Chichester: Wiley.
- Godino, J. D. (1996). Mathematical concepts, their meanings and understanding. In L. Puig & A. Gutiérrez (Eds.), Proceedings of the Twentieth Conference on the Psychology of Mathematics Education (Vol. 2, pp. 417–424). University of Valencia: PME Group.
- Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1–2), 127-135.
- Hoffrage, U., Gigerenzer, G., Krauss, S., & Martignon, L. (2002). Representation facilitates reasoning: What natural frequencies are and what they are not. Cognition, 84(3), 343–352.
- Huerta, M. P. (2014). Researching conditional probability problem solving. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking. Presenting multiple perspectives (pp. 613–639). New York: Springer.
- Krippendorff, K. (2013). Content analysis: An introduction to its methodology. London: Sage.
- Ministerio de Educación y Ciencia. (2007). Real Decreto 1467/2007, de 2 de noviembre, por el que se establece la estructura del Bachillerato y se fijan sus enseñanzas mínimas (Royal Decree establishing the structure and minimum content of the high school curriculum). Madrid: Author.
- Ministerio de Educación, Cultura y Deporte. (2015). Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato (Royal Decree establishing the basic curriculum of high school). Madrid: Autor.
- Ministerio de la Presidencia. (2008). Real Decreto 1892/2008, de 14 de noviembre, por el que se regula las condiciones para el acceso a las enseñanzas universitarias oficiales de grado y los procedimientos de admisión a las universidades públicas españolas (Royal Decree establishing the conditions and procedures of entrance to public universities). Madrid: Author.
- Organisation for Economic Co-operation and Development. (2015). PISA 2015. Assessment and analytical framework. Paris: Author.
- Ortiz, J. J. (2002). Significado de los conceptos probabilísticos elementales en los textos de Bachillerato (Meaning of elementary probabilistic concepts in high school textbooks). PhD dissertation. University of Granada, Spain.
- Pollatsek, A., Well, A. D., Konold, C., & Hardiman, P. (1987). Understanding conditional probabilities. Organization, Behavior and Human Decision Processes, 40, 255–269.
- Tversky, A., & Kahneman, D. (1982). Judgements of and by representativeness. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 84–98). New York: Cambridge University Press.
- Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223–265.