Positional accuracy in close-range photogrammetry through Topography and Geodesy

  1. Nero, Marcelo Antonio 1
  2. Pinto Rocha, André 2
  3. Guerra Mamede, Clayton 2
  4. Borba Schuler, Borba Schuler 3
  5. da Costa Temba, Plínio 4
  6. Reinoso-Gordo, Juan Francisco 5
  1. 1 Universidade Federal de Minas Gerais-UFMG (Brasil) Departamento de Cartografía
  2. 2 Universidade Federal de Pernambuco- UFPE, (Brasil) Centro de Tecnología y Geociencias
  3. 3 Universidade Federal de Pernambuco - UFPE (Brasil) Departamento de Ingeniería Cartográfica
  4. 4 Universidade de Minas Gerais - UEMG, MG (Brasil) Instituto de Geociencias
  5. 5 Universidad de Granada (España) Departamento de Expresión Gráfica Arquitectónica y en la Ingeniería
Journal:
Revista de arquitectura

ISSN: 1657-0308 2357-626X

Year of publication: 2023

Issue Title: julio-diciembre

Volume: 25

Issue: 2

Type: Article

DOI: 10.14718/REVARQ.2023.25.3659 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Revista de arquitectura

Sustainable development goals

Abstract

A modelagem tridimensional computacional pode ser utilizada para a reconstrução de objetos do mundo real com todos seus detalhes e estado de conservação. A Fotogrametria oferece produtos com acurácia, além da flexibilidade na execução de projetos simples ou complexos, de acordo com a facilidade e a rapidez na aquisição dos dados. Os modelos tridimensionais (3D) georreferenciados permitem uma documentação do objeto mapeado, através de sua localização. Este trabalho apresenta uma metodologia baseada em técnicas topográficas e geodésicas para o georreferenciamento aplicado na modelagem tridimensional de formas arquitetônicas com o emprego da Fotogrametria Terrestre Digital. Posteriormente, foi realizada a comparação de medidas realizadas no produto obtido em ambiente computacional e de medidas realizadas com uso de topografia de precisão, considerando-se a conversão de coordenadas para os mesmos sistemas de projeção e referência.  Finalmente, aplicou-se a análise estatística para a validação e a definição quantitativa em termos posicionais da qualidade do produto final.

Bibliographic References

  • Ahmed, M., Hass, C. T., & Hass, R. (2012). Using digital photogrammetry for pipe-works progress tracking, Canadian Journal of Civil Engineering, 39(9), 1062-1071. https://doi.org/10.1139/l2012-055
  • Associação Brasileira de Normas Técnicas (ABNT). (2021). NBR 13133: Execução de levantamento topográfico - Procedimento. Rio de Janeiro. https://www.normas.com.br/visualizar/abnt-nbr-nm/6400/abnt-nbr13133-execucao-de-levantamento-topografico-procedimento
  • Associação Brasileira de Normas Técnicas (ABNT). (2022). NBR 14166: Rede de referência cadastral municipal: Requisitos e procedimento. Rio de Janeiro, https://www.normas.com.br/autorizar/visualizacao-nbr/10905/identificar/visitante
  • Ayala-García, E. T. (2021). La arquitectura, el espacio público y el derecho a la ciudad. Entre lo físico y lo vivencial. Revista de Arquitectura (Bogotá), 23(2), 36-46. https://doi.org/10.14718/RevArq.2021.3286
  • Basnet, K., Must, M., Constantinescu, G., Ho, H., & Xu, H. (2016). Close-range photogrammetry for dynamically tracking drifted snow deposition. Cold Regions Science and Technology, 121, 141-153. https://doi.org/10.1016/j.coldregions.2015.08.013
  • Bill, R., Blankenbach, J., Breunig, M., Haunert, J. H., Heipke, C., Herle, S., ... & Werner, M. (2022). Geospatial Information Research: State of the Art, Case Studies and Future Perspectives. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 90, 349-389. https://link.springer.com/article/10.1007/s41064-022-00217-9
  • Brun, E. V. P. (2005). Verificação e classificação de níveis de acordo com normas internacionais. Dissertation presented in Course of Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, Curitiba. https://acervodigital.ufpr.br/handle/1884/11171
  • Cârlan, I., & Dovleac, B. (2017). 3D modelling of arutela roman castrum using close-range photogrammetry. International Journal of Conservation Science, 8(1), 35-42. https://www.researchgate.net/publication/316642509_3D_modelling_of_Arutela_Roman_Castrum_using_close-range_photogrammetry
  • Cedeño-Valdiviezo, A., & Torres-Lima, P. A. (2019). Conservación del arte contemporáneo: el caso de Mathias Goeritz en la catedral metropolitana de México. Revista de Arquitectura (Bogotá), 21(1), 44-53. https://doi.org/10.14718/RevArq.2019.21.1.2304
  • Cintra, J. P., & Rocco, J. (2014). Controle de qualidade angular em levantamentos topográficos. Boletim de Ciências Geodésicas, 20(3), 562-577. https://dx.doi.org/10.1590/S1982-21702014000300032
  • Cintra, J. P., Nero, M. A., & Rodrigues, D. (2011). GNSS/NTRIP Service and Technique: Accuracy Tests. Boletim de Ciências Geodésicas, 17(2), 257-271. https://doi.org/10.1590/S1982-21702011000200006
  • Coelho, L., & Brito, J. N. (2007). Fotogrametria digital. EdUERJ.
  • Colombo, O. (2008). Real-Time, Wide-Area, Precise Kinematic Positioning Using Data from Internet NTRIP Streams, Colombo, O.L., In: Proceedings ION GNSS 2008, Savannah, Georgia. 2008. https://www.researchgate.net/publication/280938048_Real-Time_Wide-Area_Precise_Kinematic_Positioning_Using_Data_from_Internet_NTRIP_Streams
  • Colorado, L. A. M., & Santos, J. C. M. (2015). Kinematic parameter estimation using close-range photogrammetry for sport applications, In: Proc. SPIE 9681, 11th International Symposium on Medical Information Processing and Analysis, 96810M (22 December 2015); Cuenca, Ecuador, https://doi.org/10.1117/12.2208354
  • Cortés-Garzón, L. (2023). Cultura, prácticas artísticas y espacio urbano en la Localidad de San Cristóbal: el caso del suroriente, Bogotá. Revista de Arquitectura (Bogotá), 23(1). http://dx.doi.org/10.14718/RevArq.2023.25.3864
  • Deutsches Institut fur Normung. DIN 18723 - 1: Feldverfahren zur Genauigkeitsuntersuchung Geodatischer Instrumente – Allgemeines. Deutschland, 1990a. https://standards.globalspec.com/std/426033/DIN%2018723-1
  • Deutsches Institut fur Normung. DIN 18723 - 2: Feldverfahren zur Genauigkeitsuntersuchung Geodatischer Instrumente – Nivelliere. Deutschland, 1990b. https://infostore.saiglobal.com/en-us/Standards/DIN-18723-2-1990-387657_SAIG_DIN_DIN_880541/
  • Egea-Roca, D., Arizabaleta-Diez, M., Pany, T., Antreich, F., López-Salcedo, J. A., Paonni, M., & Seco-Granados, G. (2022). GNSS User Technology: State-of-the-Art and Future Trends. IEEE Access, 10, 39939-39968. https://ieeexplore.ieee.org/iel7/6287639/9668973/09751089.pdf
  • Faggion, P. L. (2001). Obtenção dos elementos de calibração e certificação de medidores eletrônicos de distância em campo e laboratório. Phd thesis presented in Course of Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná, Curitiba. https://pdfs.semanticscholar.org/3239/f005258e5e79af396c1c76ea23fc93d70327.pdf
  • Ferenčík, M., Dudáková, Z., Kardoš, M., Sivák, M., Merganičová, K., & Merganič, J. (2022). Measuring Soil Surface Changes after Traffic of Various Wheeled Skidders with Close-Range Photogrammetry. Forests, 13(7), 976. https://www.mdpi.com/1999-4907/13/7/976/pdf?version=1655896051
  • Fraser, R., Mowlam, A., Collier, P. (2005). Augmentation of Low–Cost GPS Receivers via Web Services and Wireless Mobile Devices. Journal of Global Positioning Systems, 3(1-2), 2005, 85-94. https://www.scirp.org/pdf/nav20040100013_63122120.pdf
  • Fraštia, M. (2009). Creation of the accurate spatial models of historical objects by the close-range photogrammetry method, Acta Montanistica Slovaca, 14(1), 34-40. https://www.researchgate.net/publication/40422877_Creation_of_the_accurate_spatial_models_of_historical_objects_by_the_close-range_photogrammetry_method
  • Fu, X., Peng, C., Li, Z., Liu, S., Tan, M., Song, J. (2017). The application of multi-baseline digital close-range photogrammetry in three-dimensional imaging and measurement of dental casts. Plos One, 12(6), e0178858. https://doi.org/10.1371/ journal. pone.0178858
  • Geomatics Industry Association of America (GIAA). (2002). DIN 18723 Specification for Theodolite Accuracy. Professional Surveyor Magazine, nov. 2002. https://s3.microsurvey.com/support/Knowledgebase/stderr/Din18723.pdf
  • Gnann, N., Baschek, B., & Ternes, T. (2022). Close-range remote sensing-based detection and identification of macroplastics on water assisted by artificial intelligence: a review. Water Research, 118902. https://www.sciencedirect.com/science/article/pii/S0043135422008491?casa_token=ovWzA7czhNIAAAAA:4Rj6XWxx2FYYBsqyL3F3BI4EDV-ieAImy5tO6IhaGvHrGVIrTyt27E-RclLpkEccQgdhaJiRvdZ1
  • Gonçalves, J. A., Madeira, S., & Sousa, J. J. (2012). Topografia: Conceitos e Aplicações. Porto, Portugal: Editora Lidel, 357p.
  • Gutiérrez-Morales, G. (2019). Arquitecturas tradicionales y populares: un reto para la historiografía de la arquitectura en Colombia. Revista de Arquitectura (Bogotá), 22(2). https://doi.org/10.14718/RevArq.2020.2040
  • Illmann, R., Rosenberger, M., & Notni, G. (2022). Overview of the state of the art in the digitization of drivable forestry roads. Image Sensing Technologies: Materials, Devices, Systems, and Applications IX, 12091, 66-75. https://doi.org/10.1117/12.2622738
  • Jiang, R., Jáuregui, D. V., & White, K. R. (2008). Close-range photogrammetry applications in bridge measurement: Literature review. Journal Measurement, 41(8), 823-834. https://doi.org/10.1016/j.measurement.2007.12.005
  • Kasser, M., Egels, Y. (2002) Digital Photogrammetry. New York-USA: Taylor & Francis.
  • Koken, A., Koroglu, M. A., Karabork, H., & Ceylan, A. (2014). Photogrammetric Approach in Determining Beam-Column Connection Deformations. Boletim de Ciências Geodésicas, 20(3), 720-733. https://doi.org/10.1590/S1982-21702014000300041
  • Kraus, K. (1993). Photogrammetry. V. 1, Bonn-Germany: Ümmler.
  • Kushwaha, S.K.P, Dayal, K. R., Singh, A., & Jain, K. (2019). Building facade and rooftop segmentation by normal estimation from UAV derived RGB point cloud. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W17, 2019 6th International Workshop Low-cost 3D – Sensors, Algorithms, Applications, 2–3 December 2019, Strasbourg, France, 173-177.
  • Kwak, E., Detchev, I., Habib, A., El-Badry, M., Hughes, C. (2013) Precise Photogrammetric Reconstruction Using Model-Based Image Fitting for 3D Beam Deformation Monitoring. Journal of Surveying Engineering, 139(3), 143-155. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000105
  • Lauria, G., Sineo, L., & Ficarra, S. (2022). A detailed method for creating digital 3D models of human crania: an example of close-range photogrammetry based on the use of Structure-from-Motion (SfM) in virtual anthropology. Archaeological and Anthropological Sciences, 14(3), 1-13. https://link.springer.com/article/10.1007/s12520-022-01502-9
  • Leick, A., Rapoport, L., Tatarnikov, D. (2015). GPS Satellite Surveying. 4th Ed. New York-USA: Wiley.
  • Li, Z., & Shan, J. (2022). RANSAC-based multi primitive building reconstruction from 3D point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 247-260. https://doi:10.1016/j.isprsjprs.2021.12.012
  • Llanos-Chaparro, I., Henao-Carvajal, E., & Bárcenas-Duque, D. (2022). Adaptaciones geográficas de la casa moderna en Colombia Cuatro casos de estudio en el litoral, el valle, la montaña y el altiplano. Revista de Arquitectura (Bogotá), 24(2). https://doi.org/10.14718/RevArq.2022.24.4248
  • Long, C., Wan, B., Yang, Z., Liu, H., Tao, L., Ruan, G., Liu, Y., Wei, Y. (2017). Study on close-range photogrammetry without traditional self-calibration measurement model, Proc. SPIE 10458, AOPC 2017: 3D Measurement Technology for Intelligent Manufacturing, 104580C (24 October 2017); Beijing, China. https://doi.org/10.1117/12.2281984
  • Maric, I., Panda, L., & Milosevic, R. (2022). Multi-Resolution Modelling of the Tufa Formation Dynamic using Close-Range Photogrammetry, Handheld 3D Scanner and Terrestrial Laser Scanner. In GISTAM (pp. 75-82).
  • Martín, S., Uzkeda, H., Poblet, J., Bulnes, M., & Rubio, R. (2013). Construction of accurate geological cross-sections along trenches, cliffs and mountain slopes using photogrammetry. Computer & Geosciences, 51, 90-100. https://doi.org/10.1016/j.cageo.2012.09.014
  • Mikail, M., Bethel, J. M., McGlone, J. C. (2001). Introduction to Modern Photogrammetry. John Wiley & Sons.
  • Monico, J. F. G. (2009). Posicionamento pelo GNSS: Descrição, fundamentos e aplicações. UNESP.
  • Murtiyoso, A., Pellis, E., Grussenmeyer, P., Landes, T., & Masiero, A. (2022). Towards Semantic Photogrammetry: Generating Semantically Rich Point Clouds from Architectural Close-Range Photogrammetry. Sensors, 22(3), 966. https://www.mdpi.com/1424-8220/22/3/966/pdf
  • Mustaffar, M., Saari, R., Abu Bakar, S., Moghadasi, M., & Marsono, K. (2012). The Measurement of Full-Scale Structural Beam-Column Connection Deformation Using Digital Close-range Photogrammetry Technique, Malaysian Journal of Civil Engineering, 24(2), 148-160. https://mjce.utm.my/index.php/MJCE/article/view/281/270
  • Nategh, M., Ekinci, A., & Iravanian, A. (2022). A Novel Application of Close-range Photogrammetry for Earth Retaining Wall and Slope Stability Assessment. https://www.researchsquare.com/article/rs-1534286/latest.pdf
  • Nex, F, Armenakis, C., Cramer, M., Cucci, D.A., Gerke, M., Honkavaara, E., Kukko, A., Persello, C., & Skaloud, J. (2022). UAV in the advent of the twenties: Where we stand and what is next. ISPRS Journal of Photogrammetry and Remote Sensing, 184, 215-242. https://doi.org/10.1016/j.isprsjprs.2021.12.006
  • Paciléo Netto, N. (1993). Métodos de ajustamento em geodésia e topografia. Thesis presented in Escola Politécnica. Universidade de São Paulo.
  • Paciléo Netto, N. (1997). Campo de provas para instrumentos de medição e posicionamento. Universidade de São Paulo.
  • Paixão, A., Muralha, J., Resende, R., & Fortunato, E. (2022). Close-Range Photogrammetry for 3D Rock Joint Roughness Evaluation. Rock Mechanics and Rock Engineering, 55(6), 3213-3233.
  • Petruccioli, A., Gherardini, F., & Leali, F. (2022). Assessment of close-range photogrammetry for the low-cost development of 3D models of car bodywork components. International Journal on Interactive Design and Manufacturing (IJIDeM), 1-11.
  • Photomodeler (2013). www.photomodeler.com. Access in: Dec. 02, 2013.
  • Reinoso-Gordo, J. F., Romero-Zaliz, R., León-Robles, C., Mataix-SanJuan, J., & Nero, M. A. (2020). Fourier-Based Automatic Transformation between Mapping Shapes—Cadastral and Land Registry Applications. ISPRS International Journal of Geo-Information, 9(8), 482. https://doi.org/10.3390/ijgi9080482
  • Santofimio-Ortiz, R., Pérez-Agudelo, S. M. (2020). Monumentos y Arte urbano: Percepciones actitudes y valores en el caso de la ciudad de Manizales. Revista de Arquitectura (Bogotá), 22(2). https://doi.org/10.14718/RevArq.2020.2221
  • Santosi, Z., Sokac, M., Korolija-Crkvenjakov, D., Kosec, B., Sokovic, M., & Budak, I. (2015). Reconstruction of 3D models of cast sculptures using close-range photogrammetry. Metalurgija, 54(4), 695-698, 2015. https://www.researchgate.net/publication/282200200_Reconstruction_of_3D_models_of_cast_sculptures_using_close-range_photogrammetry
  • Shortis, M. R., & Shager, J. W. (2014). A practical target recognition system for close-range photogrammetry. The Photogrammetric Record, 29(147), 337-355. https://doi.org/10.1111/phor.12070
  • Silva, I., & Segantini, P. C. L. (2015). Topografia para Engenharia: teoria e prática de geomática (1st ed.). Rio de Janeiro-Brazil.
  • Silva, M. M. S. (2008). Metodologia para a criação de um laboratório para classificação das componentes angulares horizontal e vertical, de teodolitos e estações totais. 2008. 139p. Phd thesis presented in Universidade Federal do Paraná. Curitiba, Paraná.
  • Silva, M. M. S., Faggion, P. L., Veiga, L. A. K. (2010). Metodologia de classificação das componentes angulares horizontal de teodolitos e estações totais em laboratório. Boletim de Ciências Geodésicas, 16(3), 403-419. https://revistas.ufpr.br/bcg/article/view/18724/12151
  • Um, I.; Park, S., Kim, H. T., & Kim, H. (2020). Configuring RTK-GPS Architecture for System Redundancy in Multi-Drone Operations. IEEE Access, 8, 76228-76242, 2020. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9075221