Preliminary Study of the Bactericide Properties of Biodegradable Polymers (PLA) with Metal Additives for 3D Printing Applications
- López-Camacho, Anyul 23
- Magaña-García, Dulce 1
- Grande, María José 1
- Carazo-Álvarez, Daniel 4
- La Rubia, M. Dolores 2
- 1 Health Sciences Department, University of Jaén, 23071 Jaén, Spain
- 2 Chemical, Environmental and Materials Engineering Department, University of Jaén, 23071 Jaén, Spain
- 3 Smart Materials 3D, Polígono Industrial El Retamar, 7, 23680 Jaén, Spain
- 4 Mechanical and Mining Engineering Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
ISSN: 2306-5354
Año de publicación: 2023
Volumen: 10
Número: 3
Páginas: 297
Tipo: Artículo
Otras publicaciones en: Bioengineering
Resumen
Plastic is a highly used material in various sectors. Due to its plentiful availability in the environment, microorganism surface contamination is a risk. The aim of this work is to achieve bactericidal capacity in plastics that reduces the microorganism’s colonization risk and, consequently, reduces the chances of having an infection with E. coli and Listeria monocytogenes bacteria. Using polylactic acid (PLA) as the polymeric matrix, mixtures in concentrations of metal additive of ions of silver (Ag) R148 and S254 in 1% and 2% have been studied and manufactured. The materials are developed on an industrial scale through a process that proceeds as follows: (I) a mixture of polymer and additive in a double-screw compounder to obtain the compound in different concentrations, (II) the manufacture of filaments with a single-screw extruder, (III) 3D printing parts. Therefore, materials are evaluated in the form of powder, pellets and printed pieces to ensure their antibacterial effectiveness throughout the manufacturing process. The results of the research show antibacterial effectiveness for E. coli and Listeria monocytogenes of metal additives and polymeric compounds for all manufacturing phases on an industrial scale, with the effectiveness for additive R148 predominating at a concentration of 2%, demonstrating its microbial efficacy on surfaces with potential application in medicine.
Referencias bibliográficas
- Roberts, C.A., and Buikstra, J.E. (2019). Bacterial Infections, Elsevier Inc.
- Roca, (2015), New Microbes New Infect., 6, pp. 22, 10.1016/j.nmni.2015.02.007
- Fujiyoshi, (2017), Front. Microbiol., 8, pp. 2336, 10.3389/fmicb.2017.02336
- Ghosh, (2020), ACS Appl. Mater. Interfaces, 12, pp. 27853, 10.1021/acsami.9b22610
- Demchenko, (2022), React. Funct. Polym., 170, pp. 105096, 10.1016/j.reactfunctpolym.2021.105096
- Pettinari, (2021), Coord. Chem. Rev., 446, pp. 214121, 10.1016/j.ccr.2021.214121
- Beisl, (2019), Water Res., 149, pp. 225, 10.1016/j.watres.2018.10.096
- Liu, (2019), Biomaterials, 208, pp. 8, 10.1016/j.biomaterials.2019.04.008
- Chen, (2021), Environ. Technol. Innov., 21, pp. 101304, 10.1016/j.eti.2020.101304
- Rovira, (2022), Food Packag. Shelf Life, 33, pp. 100910, 10.1016/j.fpsl.2022.100910
- Rogalsky, (2021), Mater. Chem. Phys., 267, pp. 124682, 10.1016/j.matchemphys.2021.124682
- Ding, (2021), Polym. Chem., 12, pp. 2397, 10.1039/D0PY01751E
- Avcu, (2022), Acta Biomater., 151, pp. 1, 10.1016/j.actbio.2022.07.048
- Mural, (2014), J. Mater. Chem. A, 2, pp. 17635, 10.1039/C4TA03997A
- Fong, (2020), Int. J. Biol. Macromol., 145, pp. 92, 10.1016/j.ijbiomac.2019.12.146
- Eckhard, (2021), Bioact. Mater., 6, pp. 4470, 10.1016/j.bioactmat.2021.04.033
- Thomas, (2007), J. Colloid Interface Sci., 315, pp. 389, 10.1016/j.jcis.2007.06.068
- Gowriboy, (2022), J. Environ. Chem. Eng., 10, pp. 108668, 10.1016/j.jece.2022.108668
- Hopta, (2019), Regul. Mech. Biosyst., 10, pp. 484, 10.15421/021971
- Chowdhury, (2021), Nanosci. Nanotechnol. Asia, 11, pp. 119, 10.2174/2210681210666200128155244
- Jayaramudu, (2013), Carbohydr. Polym., 92, pp. 2193, 10.1016/j.carbpol.2012.12.006
- Ciubotariu, (2015), Sci. Bull. “Mircea Cel Batran” Nav. Acad., 18, pp. 162
- Kretsinger, R.H., Uversky, V.N., and Permyakov, E.A. (2013). Encyclopedia of Metalloproteins, Springer Science+Business Media. [1st ed.].
- Cerrillo, (2020), Microporous Mesoporous Mater., 305, pp. 110367, 10.1016/j.micromeso.2020.110367
- Chu, (2020), Polyhedron, 188, pp. 114684, 10.1016/j.poly.2020.114684
- Ratvijitvech, (2021), Mater. Today Commun., 28, pp. 102617, 10.1016/j.mtcomm.2021.102617
- Liu, (2017), Dent. Mater., 33, pp. e348, 10.1016/j.dental.2017.06.014
- Slavin, (2017), J. Nanobiotechnol., 15, pp. 65, 10.1186/s12951-017-0308-z
- Kędziora, A., Speruda, M., Krzyżewska, E., Rybka, J., Łukowiak, A., and Bugla-Płoskońska, G. (2018). Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci., 19.
- Roy, (2019), RSC Adv., 9, pp. 2673, 10.1039/C8RA08982E
- Ramya, (2016), Int. J. Mech. Eng. Technol., 7, pp. 396
- Chua, (2021), Eng. Regen., 2, pp. 288
- Chen, (2019), J. Eur. Ceram. Soc., 39, pp. 661, 10.1016/j.jeurceramsoc.2018.11.013
- Singh, (2020), Mater. Des. Process. Commun., 2, pp. e97
- Pagano, (2021), Dent. Mater., 37, pp. e118, 10.1016/j.dental.2020.11.003
- Shahrubudin, (2019), Procedia Manuf., 35, pp. 1286, 10.1016/j.promfg.2019.06.089
- Wang, (2021), J. Manuf. Syst., 60, pp. 709, 10.1016/j.jmsy.2021.07.023
- Varghese, (2022), Ann. 3D Print. Med., 5, pp. 100043, 10.1016/j.stlm.2021.100043
- Moazzam, (2022), Bioprinting, 28, pp. e00254, 10.1016/j.bprint.2022.e00254
- Quinzi, V., Gallusi, G., Carli, E., Pepe, F., Rastelli, E., and Tecco, S. (2022). Elastodontic Devices in Orthodontics: An In-Vitro Study on Mechanical Deformation under Loading. Bioengineering, 9.
- Podstawczyk, (2020), Polym. Compos., 41, pp. 4692, 10.1002/pc.25743
- Vidakis, N., Petousis, M., Velidakis, E., Liebscher, M., and Tzounis, L. (2020). Three-Dimensional Printed Antimicrobial Objects of Polylactic Acid (PLA)-Silver Nanoparticle Nanocomposite Filaments Produced by an In-Situ Reduction Reactive Melt Mixing Process. Biomimetics, 5.
- Tse, I., Jay, A., Na, I., Murphy, S., Niño-Martínez, N., Martínez-Castañon, G.A., Magrill, J., and Bach, H. (2021). Antimicrobial Activity of 3d-Printed Acrylonitrile Butadiene Styrene (Abs) Polymer-Coated with Silver Nanoparticles. Materials, 14.
- (2022), Acta Biomater., 155, pp. 654
- Kocsis, (2020), J. Therm. Anal. Calorim., 139, pp. 367, 10.1007/s10973-019-08377-4
- Zhang, (2018), Compos. Sci. Technol., 156, pp. 136, 10.1016/j.compscitech.2017.12.037
- Soe, (2023), J. Mech. Behav. Biomed. Mater., 137, pp. 105536, 10.1016/j.jmbbm.2022.105536
- Fan, (2019), Polym. Test., 76, pp. 73, 10.1016/j.polymertesting.2019.03.005
- (2018). Método Horizontal Para La Detección y El Recuento de Listeria monocytogenes y de Listeria spp.—Parte 2: Método de Recuento (Standard No. UNE-EN ISO 11290-2).
- (2020). Detección de Escherichia coli (Standard No. UNE-EN ISO 21150).
- (2018). Método Horizontal Para La Deteccion y Recuento de Listeria monocytogenes y de Listeria spp.—Parte 1: Método de Detección (Standard No. UNE-EN ISO 11290-1).
- (2014). Recuento de Escherichia Coli y de Bacterias Coliformes Parte 1: Método de Filtración Por Membrana Para Aguas Con Bajo Contenido de Microbiota (Standard No. UNE-EN ISO 9308-1:2014/A1).
- (2020). Detección de Pseudomonas aeruginosa (Standard No. UNE-EN ISO 22717).
- (2017). Método Horizontal Para La Detección de Cronobacter spp. (Standard No. UNE-EN ISO 22964).
- (2012). Fabricación Por Adición de Capas En Materiales Plásticos (Standard No. UNE-EN 116005).
- (2016), Int. J. Food Microbiol., 238, pp. 89, 10.1016/j.ijfoodmicro.2016.08.037
- (2016), Innov. Food Sci. Emerg. Technol., 35, pp. 177, 10.1016/j.ifset.2016.05.006
- Abriouel, (2012), Food Microbiol., 30, pp. 51, 10.1016/j.fm.2011.12.013
- Ortega Blázquez, I., Grande Burgos, M.J., Pérez-Pulido, R., Gálvez, A., and Lucas, R. (2017). Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment. Coatings, 7.
- Soriano, (2016), J. Food Prot., 2, pp. 25
- (2005), Environ. Health Perspect., 113, pp. 823, 10.1289/ehp.7339
- Mucha, (2014), J. Appl. Polym. Sci., 131, pp. 40144, 10.1002/app.40144
- Gan, (2020), Polym. Bull., 77, pp. 793, 10.1007/s00289-019-02776-1
- Li, W., Zhang, C., Chi, H., Li, L., Lan, T., Han, P., Chen, H., and Qin, Y. (2017). Development of Antimicrobial Packaging Film Made from Poly(Lactic Acid) Incorporating Titanium Dioxide and Silver Nanoparticles. Molecules, 22.
- Feng, (2000), J. Biomed. Mater. Res., 52, pp. 662, 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
- Gao, (2014), Biomaterials, 35, pp. 4223, 10.1016/j.biomaterials.2014.01.058
- Rohatgi, (2021), Infect. Genet. Evol., 95, pp. 105055, 10.1016/j.meegid.2021.105055
- Liang, (2023), Environ. Pollut., 319, pp. 120983, 10.1016/j.envpol.2022.120983
- Neetoo, (2008), Int. J. Food Microbiol., 122, pp. 8, 10.1016/j.ijfoodmicro.2007.11.043