Revisitando las variables que condicionan la neuroplasticidad asociada a la interpretación musical
-
1
Universidad de Granada
info
ISSN: 2695-9933
Año de publicación: 2022
Volumen: 11
Número: 2
Páginas: 34
Tipo: Artículo
Otras publicaciones en: TECHNO REVIEW: International Technology, Science and Society Review / Revista Internacional de Tecnología, Ciencia y Sociedad
Resumen
El entrenamiento musical reiterado puede modificar el cerebro tanto anatómicamente como en su función, pero existen una serie de variables que condicionan la neuroplasticidad. Este texto realiza una revisión actualizada sobre ellas, revisitándolas incluyendo las últimas investigaciones en el campo de la neurociencia de la música. Entre las variables de interés, se encuentran las diferencias individuales, el sexo, la lateralidad manual, la habilidad de oído absoluto, el instrumento que se interpreta, el tipo de formación musical que recibe el intérprete, las particularidades del entrenamiento –como la intensidad del mismo o la edad de inicio, por ejemplo–, además de otros factores ambientales y genéticos.
Referencias bibliográficas
- Albusac-Jorge, M. (2022). Mú sica, aprendizaje, experiencia y plasticidad cerebral. En A. Gregorio Cano, J. Sánchez Santamaría & B. Miguélez Juan (Coords.). Campos de investigación de vanguardia, Pirámide.
- Altenmüller, E., & Furuya, S. (2016). Brain Plasticity and the Concept of Metaplasticity in Skilled Musicians. En J. Laczko, & M. Latash, (Eds.). Progress in Motor Control: Theories and Translations. Advances in Experimental Medicine and Biology, 957 (pp. 197-208). Springer. https://doi.org/10.1007/978-3-319-47313-0_11 DOI: https://doi.org/10.1007/978-3-319-47313-0_11
- Bachem, A. (1937). Various types of absolute pitch. Journal of the Acoustical Society of America, 9, 146-151. https://doi.org/10.1121/1.1915919 DOI: https://doi.org/10.1121/1.1915919
- Bachem, A. (1955). Absolute pitch. Journal of the Acoustical Society of America, 27, 1180-1185. https://doi.org/10.1121/1.1908155 DOI: https://doi.org/10.1121/1.1908155
- Baer, L. H., Park, M. T. M., Bailey, J. A., Chakravarty, M. M., Li, K. Z. H., & Penhune, V. B. (2015). Regional cerebellar volumes are related to early musical training and finger tapping performance, Neuroimage, 109, 130-139.https://doi.org/10.1016/j.neuroimage.2014.12.076 DOI: https://doi.org/10.1016/j.neuroimage.2014.12.076
- Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2014). Early Musical Training Is Linked to Gray Matter Structure in the Ventral Premotor Cortex and Auditory–Motor Rhythm Synchronization Performance. Journal of Cognitive Neuroscience, 26 (4), 755-767. https://doi.org/10.1162/jocn_a_00527 DOI: https://doi.org/10.1162/jocn_a_00527
- Bangert, M., & Schlaug, G. (2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24(6), 1832-1834. https://doi.org/10.1111/j.1460-9568.2006.05031.x DOI: https://doi.org/10.1111/j.1460-9568.2006.05031.x
- Belden, A., Zeng, T., Przysinda, E., Anteraper, S. A., Whitfield-Gabrieli, S., & Loui, P. (2020). Improvising at rest: Differentiating jazz and classical music training with resting state functional connectivity. Neuroimage, 207, 116384. https://doi.org/10.1016/j.neuroimage.2019.116384 DOI: https://doi.org/10.1016/j.neuroimage.2019.116384
- Bengtsson, S., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005) Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8, 1148-1150. https://doi.org/10.1038/nn1516 DOI: https://doi.org/10.1038/nn1516
- Berlucchi, G., & Buchtel, H. A. (2009). Neuronal plasticity: historical roots and evolution of meaning. Experimental Brain Research, 192(3), 307-319. https://doi.org/10.1007/s00221-008-1611-6 DOI: https://doi.org/10.1007/s00221-008-1611-6
- Bermudez, P. (2008). The neural correlates of absolute pitch (Tesis doctoral). McGill University, Canadá. https://tinyurl.com/28672ydz
- Bermudez, P., Lerch, J. P., Evans, A. C., & Zatorre, R. J. (2009). Neuroanatomical Correlates of Musicianship as Revealed by Cortical Thickness and Voxel-Based Morphometry. Cerebral Cortex, 19(7), 1583-1596. https://doi.org/10.1093/cercor/bhn196 DOI: https://doi.org/10.1093/cercor/bhn196
- Bermudez, P., & Zatorre, R. J. (2005). Differences in Gray Matter between Musicians and Nonmusicians. Annals of the New York Academy of Sciences, 1060(1), 395-399. https://doi.org/10.1196/annals.1360.057 DOI: https://doi.org/10.1196/annals.1360.057
- Bianco, V., Berchicci, M., Gigante, E., Perri, R. L., Quinzi, F., Mussini, E., & Di Russo, F. (2022). Brain Plasticity Induced by Musical Expertise on Proactive and Reactive Cognitive Functions. Neuroscience, 483, 1-12. https://doi.org/10.1016/j.neuroscience.2021.12.032 DOI: https://doi.org/10.1016/j.neuroscience.2021.12.032
- Bianco, R., Novembre, G., Keller, P. E., Villringer, A. & Sammler, D. (2018). Musical genre-dependent behavioural and EEG signatures of action planning: A comparison between classical and jazz pianists. Neuroimage, 169, 383-394. https://doi.org/10.1016/j.neuroimage.2017.12.058 DOI: https://doi.org/10.1016/j.neuroimage.2017.12.058
- Brans, R. G., Kahn, R. S., Schnack, H. G., van Baal, G. C., Posthuma, D., van Haren, N. E., Lepage, C., Lerch, J. P., Collins, D.L., Evans, A. C., Boomsma, D. I., & Hulshoff Pol, H. E. (2010). Brain plasticity and intellectual ability areinfluenced by shared genes. The Journal of Neuroscience, 30(16), 5519-5524. https://doi.org/10.1523/JNEUROSCI.5841-09 DOI: https://doi.org/10.1523/JNEUROSCI.5841-09.2010
- Brown, W. A., Cammuso, K., Sachs, H., Winklosky, B., Mullane, J., Bernier, R., Svenson, S., Arin, D., Rosen-Sheidley, B., & Folstein, S. E. (2003). Autism-related Language, Personality, and Cognition in People with Absolute Pitch: Results of a Preliminary Study. Journal of Autism and Developmental Disorders volume, 33(2), 163-167.https://doi.org/10.1023/a:1022987309913 DOI: https://doi.org/10.1023/A:1022987309913
- Burkhard, A., Hänggi, J., Elmer, S., & Jäncke, L. (2020). The importance of the fibre tracts connecting the planum temporale in absolute pitch possessors. Neuroimage, 211, 116590. https://doi.org/10.1016/j.neuroimage.2020.116590 DOI: https://doi.org/10.1016/j.neuroimage.2020.116590
- Choi, U.-S., Sung, Y.-W., Hong, S., Chung J.-Y., & Ogawa, S. (2015). Structural and functional plasticity specific to musical training with wind instruments. Frontiers in Human Neuroscience, 9, 597. https://doi.org/10.3389/fnhum.2015.00597 DOI: https://doi.org/10.3389/fnhum.2015.00597
- Choleris, E., Galea, L. A. M., Sohrabji, F., & Frick, K. M. (2018). Sex differences in the brain: Implications for behavioral and biomedical research. Neuroscience & Biobehavioral Reviews, 85, 126-145. https://doi.org/10.1016/j.neubiorev.2017.07.005 DOI: https://doi.org/10.1016/j.neubiorev.2017.07.005
- Cosgrove, K. P., Mazure, C. M., & Staley, J. K. (2007). Evolving knowledge of sex differences in brain structure, function, and chemistry. Biological psychiatry, 62(8), 847-855. https://doi.org/10.1016/j.biopsych.2007.03.001 DOI: https://doi.org/10.1016/j.biopsych.2007.03.001
- Coro, G., Masetti, G., Bonhoeffer, P., & Betcher, M. (2019). Distinguishing Violinists and Pianists Based on Their Brain Signals. En I. Tetko, V. Kůrková, P. Karpov, & F. Theis, F. (Eds.). Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. Lecture Notes in Computer Science, 11727 (pp. 123-137). Springer. https://doi.org/10.1007/978-3-030-30487-4_11 DOI: https://doi.org/10.1007/978-3-030-30487-4_11
- Dalla Bella, S. (2016). Music and Brain Plasticity. En S. Hallam, I. Cross, & M. Thaut (Eds.). The Oxford Handbook of Music Psychology (pp. 325-342). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198722946.013.23 DOI: https://doi.org/10.1093/oxfordhb/9780198722946.013.23
- Danielsen, A., Nymoen, K., Langerød, M.T., Jacobsen, E., Johansson, M., & London, J. (2022). Sounds familiar(?): Expertise with specific musical genres modulates timing perception and micro-level synchronization to auditory stimuli. Attention, Perception, & Psychophysics, 84, 599-615. https://doi.org/10.3758/s13414-021-02393-z DOI: https://doi.org/10.3758/s13414-021-02393-z
- Deutsch D., Henthorn T., & Dolson, M. (2004). Absolute pitch, speech, and tone language: some experiments and a proposed framework. Music Perception, 21(3), 339-356. https://doi.org/10.1525/mp.2004.21.3.339 DOI: https://doi.org/10.1525/mp.2004.21.3.339
- Doelling, K. B., & Poeppel, D. (2015). Cortical entrainment to music and its modulation by expertise. Proceedings of the National Academy of Sciences of the United States of America, 112(45), E6233-E6242. https://doi.org/10.1073/pnas.1508431112 DOI: https://doi.org/10.1073/pnas.1508431112
- Dohn, A., Garza-Villarreal, E. A., Ribe, L. R., Wallentin, M., & Vuust, P. (2014). Musical Activity Tunes Up Absolute Pitch Ability. Music Perception: An Interdisciplinary Journal, 31(4), 359-371. https://doi.org/10.1525/mp.2014.31.4.359 DOI: https://doi.org/10.1525/mp.2014.31.4.359
- Dohn, A., Garza-Villarreal, E. A., Chakravarty, M. M., Hansen, M., Lerch, J. P., & Vuust, P. (2015). Gray- and White-Matter Anatomy of Absolute Pitch Possessors. Cerebral Cortex, 25(5), 1379-1388. https://doi.org/10.1093/cercor/bht334 DOI: https://doi.org/10.1093/cercor/bht334
- Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305-307. https://doi.org/10.1126/science.270.5234.305 DOI: https://doi.org/10.1126/science.270.5234.305
- Elmer S., Rogenmoser L., Kühnis J., & Jäncke L. (2015). Bridging the gap between perceptual and cognitive perspectives on absolute pitch. Journal of Neuroscience, 35(1), 366-371. https://doi.org/10.1523/JNEUROSCI.3009-14.2015 DOI: https://doi.org/10.1523/JNEUROSCI.3009-14.2015
- Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363-406. https://doi.org/10.1037/0033-295X.100.3.363 DOI: https://doi.org/10.1037/0033-295X.100.3.363
- Foster, N. E. V., Halpern, A. R., & Zatorre, R. J. (2013). Common parietal activation in musical mental transformations across pitch and time. Neuroimage, 75, 27-35. https://doi.org/10.1016/j.neuroimage.2013.02.044 DOI: https://doi.org/10.1016/j.neuroimage.2013.02.044
- Gärtner, H., Minnerop, M., Pieperhoff, P., Schleicher, A., Zilles, K., Altenmüller, E., & Amunts, K. (2013). Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players. Frontiers in Psychology, 4, 636. https://doi.org/10.3389/fpsyg.2013.00636 DOI: https://doi.org/10.3389/fpsyg.2013.00636
- Gegenhuber, B., & Tollkuhn, J. (2020). Signatures of sex: Sex differences in gene expression in the vertebrate brain. WIREs Developmental Biology, 9(1), e348. https://doi.org/10.1002/wdev.348 DOI: https://doi.org/10.1002/wdev.348
- Groussard, M., Viader, F., Landeau, B., Desgranges, B., Eustache, F., & Platel, H. (2014). The effects of musical practice on structural plasticity: The dynamics of grey matter changes. Brain and Cognition, 90, 174-180. https://doi.org/10.1016/j.bandc.2014.06.013 DOI: https://doi.org/10.1016/j.bandc.2014.06.013
- Guadalupe, T., Willems, R. M., Zwiers, M. P., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5, 261. https://doi.org/10.3389/fpsyg.2014.00261 DOI: https://doi.org/10.3389/fpsyg.2014.00261
- Habib, M., & Besson, M. (2009). What do music training and musical experience teach us about brain plasticity? Music Perception, 26(3), 279-285. https://doi.org/10.1525/mp.2009.26.3.279 DOI: https://doi.org/10.1525/mp.2009.26.3.279
- Halwani, G. F., Loui, P., Rüber, T., & Schlaug, G. (2011). Effects of Practice and Experience on the Arcuate Fasciculus: Comparing Singers, Instrumentalists, and Non-Musicians. Frontiers in Psychology, 2, 156. https://doi.org/10.3389/fpsyg.2011.00156 DOI: https://doi.org/10.3389/fpsyg.2011.00156
- Hamilton, R. H., Pascual-Leone, A., & Schlaug, G. (2004). Absolute pitch in blind musicians. Neuroreport, 15(5), 803-806. https://doi.org/10.1097/01.wnr.0000118981.36602.90 DOI: https://doi.org/10.1097/00001756-200404090-00012
- Hammond, G. (2002). Correlates of human handedness in primary motor cortex: a review and hypothesis. Neuroscience and Biobehavioral Reviews, 26(3), 285-292. https://doi.org/10.1016/S0149-7634(02)00003-9 DOI: https://doi.org/10.1016/S0149-7634(02)00003-9
- Hansen, N. C., & Reymore, L. (2021). Articulatory motor planning and timbral idiosyncrasies as underlying mechanisms of instrument-specific absolute pitch in expert musicians. Plos One, 16(2), e0247136. https://doi.org/10.1371/journal.pone.0247136 DOI: https://doi.org/10.1371/journal.pone.0247136
- Hedger, S. C., Heald, S. L. M., & Nusbaum, H. C. (2013). Absolute Pitch May Not Be So Absolute. Psychological Science, 24(8), 1496-1502. https://doi.org/10.1177/0956797612473310 DOI: https://doi.org/10.1177/0956797612473310
- Hedger, S. C., Heald, S. L., Koch, R., & Nusbaum, H. C. (2015). Auditory working memory predicts individual differences in absolute pitch learning. Cognition, 140, 95‐110. https://doi.org/10.1016/j.cognition.2015.03.012 DOI: https://doi.org/10.1016/j.cognition.2015.03.012
- Herholz, S. C., Boh, B., & Pantev, C. (2011). Musical training modulates encoding of higher-order regularities in the auditory cortex. European Journal of Neuroscience, 34(3), 524-529. https://doi.org/10.1111/j.1460-9568.2011.07775.x DOI: https://doi.org/10.1111/j.1460-9568.2011.07775.x
- Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron, 76(3), 486-502. https://doi.org/10.1016/j.neuron.2012.10.011 DOI: https://doi.org/10.1016/j.neuron.2012.10.011
- Hirata, Y., Kuriki, S., & Pantev, C. (1999). Musicians with absolute pitch show distinct neural activities in the auditory cortex. Neuroreport, 10(5), 999-1002. https://doi.org/10.1097/00001756-199904060-00019 DOI: https://doi.org/10.1097/00001756-199904060-00019
- Hou, J., Chen, A. C. N., Song, B., Sun, C., & Beauchaine, T. P. (2017). Neural correlates of absolute pitch: A review. Musicae Scientiae, 21(3), 287-302. https://doi.org/10.1177/1029864916662903 DOI: https://doi.org/10.1177/1029864916662903
- Hund-Georgiadis, M., von Cramon, D. (1999). Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Experimental Brain Research, 125, 417-425. https://doi.org/10.1007/s002210050698 DOI: https://doi.org/10.1007/s002210050698
- Hutchinson, S., Lee, L. H., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of musicians. Cerebral Cortex, 13(9), 943-949. https://doi.org/10.1093/cercor/13.9.943 DOI: https://doi.org/10.1093/cercor/13.9.943
- Ireland, K., Iyer, T. A., & Penhune, V. B. (2019). Contributions of age of start, cognitive abilities and practice to musical task performance in childhood. Plos One, 14(4), e0216119. https://doi.org/10.1371/journal.pone.0216119 DOI: https://doi.org/10.1371/journal.pone.0216119
- Itoh, K., Suwazono, S., Arao, H., Miyazaki, K., & Nakada, T. (2005). Electrophysiological correlates of absolute pitch and relative pitch. Cerebral Cortex, 15(6), 760-769. https://doi.org/10.1093/cercor/bhh177 DOI: https://doi.org/10.1093/cercor/bhh177
- Jäncke, L. (2009). Music drives brain plasticity. F1000 Biology Reports, 1(10), 78. https://doi.org/10.3410/B1-78 DOI: https://doi.org/10.3410/B1-78
- Jäncke, L., Langer, N., & Hänggi, J. (2012). Diminished Whole-brain but Enhanced Peri-sylvian Connectivity in Absolute Pitch Musicians. Journal of Cognitive Neuroscience, 24(6), 1447-1461. https://doi.org/10.1162/jocn_a_00227 DOI: https://doi.org/10.1162/jocn_a_00227
- Jäncke, L., Peters, M., Schlaug, G., Posse, S., Steinmetz, H., & Müller-Gärtner, H.-W. (1998). Differential magnetic resonance signal change in human sensorimotor cortex to finger movements of different rate of the dominant and subdominant hand. Cognitive Brain Research, 6(4), 279-284. https://doi.org/10.1016/S0926-6410(98)00003-2 DOI: https://doi.org/10.1016/S0926-6410(98)00003-2
- Johansson, B. B. (2006). Music and brain plasticity. European Review, 14(1), 49-64. https://doi.org/10.1017/S1062798706000056 DOI: https://doi.org/10.1017/S1062798706000056
- Kanaan, R. A., Chaddock, C., Allin, M., Picchioni, M. M., Daly, E., Shergill, S. S., & McGuire, P. K. (2014). Gender influence on white matter microstructure: a tract-based spatial statistics analysis. Plos One, 9, e91109. https://doi.org/10.1371/journal.pone.0091109 DOI: https://doi.org/10.1371/journal.pone.0091109
- Kawase S., Ogawa J., Obata S., & Hirano T. (2018). An investigation into the relationship between onset age of musical lessons and levels of sociability in childhood. Frontiers in Psychology, 9, 2244. https://doi.org/10.3389/fpsyg.2018.02244 DOI: https://doi.org/10.3389/fpsyg.2018.02244
- Keenan, J. P., Thangaraj, V., Halpern, A. R., & Schlaug G. (2001). Absolute pitch and planum temporale. Neuroimage, 14(6), 1402‐1408. https://doi.org/10.1006/nimg.2001.0925 DOI: https://doi.org/10.1006/nimg.2001.0925
- Kertesz, A., Polk, M., Black, S. E., & Howell, J. (1990). Sex, handedness, and the morphometry of cerebral asymmetries on magnetic resonance imaging. Brain Research, 530(1), 40-48. https://doi.org/10.1016/0006-8993(90)90655-U DOI: https://doi.org/10.1016/0006-8993(90)90655-U
- Kim, S. G., Ashe, J., Hendrich, K., Ellermann, J. M., Merkle, H., Uğurbil, K., & Georgopoulos, A. P. (1993). Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science, 261(5121), 615-617. https://doi.org/10.1126/science.8342027 DOI: https://doi.org/10.1126/science.8342027
- Kim, S. G., & Knösche, T. R. (2016). Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7-T MRI. Human Brain Mapping, 37(10), 3486‐3501. https://doi.org/10.1002/hbm.23254 DOI: https://doi.org/10.1002/hbm.23254
- Kim, S. G., & Knösche, T. R. (2017a). On the Perceptual Subprocess of Absolute Pitch. Frontiers in Neuroscience, 11, 557. https://doi.org/10.3389/fnins.2017.00557 DOI: https://doi.org/10.3389/fnins.2017.00557
- Kim, S. G., & Knösche, T. R. (2017b). Resting state functional connectivity of the ventral auditory pathway in musicians with absolute pitch. Human Brain Mapping, 38(8), 3899‐3916. https://doi.org/10.1002/hbm.23637 DOI: https://doi.org/10.1002/hbm.23637
- Kliuchko, M., Brattico, E., Gold, B. P., Tervaniemi, M., Bogert, B., Toiviainen, P., & Vuust, P. (2019). Fractionating auditory priors: A neural dissociation between active and passive experience of musical sounds. Plos One, 14(5), e0216499. https://doi.org/10.1371/journal.pone.0216499 DOI: https://doi.org/10.1371/journal.pone.0216499
- Kodiweera, C., Alexander, A. L., Harezlak, J., McAllister, T. W., & Wu, Y. C. (2016). Age effects and sex differences in human brain white matter of young to middle-aged adults: A DTI, NODDI, and q-space study. Neuroimage, 128, 180-192. https://doi.org/10.1016/j.neuroimage.2015.12.033 DOI: https://doi.org/10.1016/j.neuroimage.2015.12.033
- Kolb, B. (2018). Brain plasticity and experience. En R. Gibb & B. Kolb (Eds.). The Neurobiology of Brain and Behavioral Development (pp. 341-389). Academic Press. https://doi.org/10.1016/B978-0-12-804036-2.00013-3 DOI: https://doi.org/10.1016/B978-0-12-804036-2.00013-3
- Kurth, F., Thompson, P. M., & Luders, E. (2018). Investigating the Differential Contributions of Sex and Brain Size to Gray Matter Asymmetry. Cortex, 99, 235-242. https://doi.org/10.1016/j.cortex.2017.11.017 DOI: https://doi.org/10.1016/j.cortex.2017.11.017
- Lee, S. K. (2018). Sex as an important biological variable in biomedical research. BMB Reports, 51(4), 167-173. https://doi.org/10.5483/BMBRep.2018.51.4.034 DOI: https://doi.org/10.5483/BMBRep.2018.51.4.034
- Lee, D. J., Chen, Y., & Schlaug, G. (2003). Corpus callosum: musician and gender effects. Neuroreport, 14(2), 205-209. https://doi.org/10.1097/01.wnr.0000053761.76853.41 DOI: https://doi.org/10.1097/00001756-200302100-00009
- Leipold, S., Klein, C., & Jäncke, L. (2021). Musical Expertise Shapes Functional and Structural Brain Networks Independent of Absolute Pitch Ability. Journal of Neuroscience, 41(11), 2496-2511. https://doi.org/10.1523/JNEUROSCI.1985-20.2020 DOI: https://doi.org/10.1523/JNEUROSCI.1985-20.2020
- Levitin, D. J., & Rogers, S. E. (2005). Absolute pitch: perception, coding, and controversies. Trends in Cognitive Sciences, 9(1), 26-33. https://doi.org/10.1016/j.tics.2004.11.007 DOI: https://doi.org/10.1016/j.tics.2004.11.007
- Loui, P., Li, H. C., Hohmann, A., & Schlaug, G. (2011). Enhanced cortical connectivity in absolute pitch musicians: A model for local hyperconnectivity. Journal of Cognitive Neuroscience, 23(4), 1015-1026. https://doi.org/10.1162/jocn.2010.21500 DOI: https://doi.org/10.1162/jocn.2010.21500
- Luders, E., Gaser, C., Narr, K. L., & Toga, A. W. (2009). Why Sex Matters: Brain Size Independent Differences in Gray Matter Distributions between Men and Women. Journal of Neuroscience, 29(45), 14265-14270. https://doi.org/10.1523/JNEUROSCI.2261-09.2009 DOI: https://doi.org/10.1523/JNEUROSCI.2261-09.2009
- McKetton, L., DeSimone, K., & Schneider, K. A. (2019). Larger Auditory Cortical Area and Broader Frequency Tuning Underlie Absolute Pitch. The Journal of Neuroscience, 39(15), 2930-2937. https://doi.org/10.1523/JNEUROSCI.1532-18.2019 DOI: https://doi.org/10.1523/JNEUROSCI.1532-18.2019
- Mateos-Aparicio, P., & Rodríguez-Moreno, A. (2019). The impact of studying brain plasticity. Frontiers in Cellular Neuroscience, 13, 66. https://doi.org/10.3389/fncel.2019.00066 DOI: https://doi.org/10.3389/fncel.2019.00066
- Matthews, T. E., Thibodeau, J. N. L., Gunther, B. P., & Penhune, V. B. (2016). The Impact of Instrument-Specific Musical Training on Rhythm Perception and Production. Frontiers in Psychology, 7, 69. https://doi.org/10.3389/fpsyg.2016.00069 DOI: https://doi.org/10.3389/fpsyg.2016.00069
- Mehrabinejad, M. M., Rafei, P., Sanjari Moghaddam, H., Sinaeifar, Z., & Aarabi, M. H. (2021). Sex Differences are Reflected in Microstructural White Matter Alterations of Musical Sophistication: A Diffusion MRI Study. Frontiers in Neuroscience, 15, 622053. https://doi.org/10.3389/fnins.2021.622053 DOI: https://doi.org/10.3389/fnins.2021.622053
- Merrett, D. L.; Peretz, I., & Wilson, S. J. (2013). Moderating variables of music training-induced neuroplasticity: a review and discussion. Frontiers in Psychology, 4, 606. https://doi.org/10.3389/fpsyg.2013.00606 DOI: https://doi.org/10.3389/fpsyg.2013.00606
- Merrett, D. L., & Wilson, S. J. (2012). Music and neural plasticity. En N. S. Rickard & K. McFerran (Eds.). Lifelong Engagement with Music: benefits for mental health and well-being (pp. 119-160). Nova Science Publishers.
- Miles S. A., Miranda R. A., & Ullman M. T. (2016). Sex differences in music: a female advantage at recognizing familiar melodies. Frontiers in Psychology, 7, 278. https://doi.org/10.3389/fpsyg.2016.00278 DOI: https://doi.org/10.3389/fpsyg.2016.00278
- Moore, E., Schaefer, R. S., Bastin, M. E., Roberts, N., & Overy, K. (2017). Diffusion tensor MRI tractography reveals increased fractional anisotropy (FA) in arcuate fasciculus following music-cued motor training. Brain and Cognition, 116, 40-46. https://doi.org/10.1016/j.bandc.2017.05.001 DOI: https://doi.org/10.1016/j.bandc.2017.05.001
- Moulton C. (2014). Perfect pitch reconsidered. Clinical medicine, 14(5), 517-519. https://doi.org/10.7861/clinmedicine.14-5-517 DOI: https://doi.org/10.7861/clinmedicine.14-5-517
- Norgaard, M., Stambaugh, L. A., & McCranie, H. (2019). The Effect of Jazz Improvisation Instruction on Measures of Executive Function in Middle School Band Students. Journal of Research in Music Education, 67(3), 339-354. https://doi.org/10.1177/0022429419863038 DOI: https://doi.org/10.1177/0022429419863038
- Oechslin, M.S., Imfeld, A., Loenneker, T., Meyer, M., & Jäncke, L. (2010). The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Frontiers in Human Neuroscience, 10, 76. https://doi.org/10.3389/neuro.09.076.2009 DOI: https://doi.org/10.3389/neuro.09.076.2009
- Olszewska, A. M., Gaca, M., Herman, A. M., Jednoróg, K., & Marchewka, A. (2021). How Musical Training Shapes the Adult Brain: Predispositions and Neuroplasticity. Frontiers in Neuroscience, 15, 630829. https://doi.org/10.3389/fnins.2021.630829 DOI: https://doi.org/10.3389/fnins.2021.630829
- Penhune, V. B. (2011). Sensitive periods in human development: Evidence from musical training. Cortex, 47(9), 1126-1137. https://doi.org/10.1016/j.cortex.2011.05.010 DOI: https://doi.org/10.1016/j.cortex.2011.05.010
- Penhune, V. B. (2019). Musical expertise and brain structure: the causes and consequences of training. En Michael H. Thaut and Donald A. Hodges (Eds). The Oxford handbook of music and the brain (pp. 417-438). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198804123.013.17 DOI: https://doi.org/10.1093/oxfordhb/9780198804123.013.17
- Penhune, V. B. (2020). A gene-maturation-environment model for understanding sensitive period effects in musical training. Current Opinion in Behavioral Sciences, 36, 13-22. https://doi.org/10.1016/j.cobeha.2020.05.011 DOI: https://doi.org/10.1016/j.cobeha.2020.05.011
- Penhune, V. B. (2021). Understanding Sensitive Period Effects in Musical Training. En S.L. Andersen (Ed.) Sensitive Periods of Brain Development and Preventive Interventions. Current Topics in Behavioral Neurosciences, 53 (pp. 167-188). Springer. https://doi.org/10.1007/7854_2021_250 DOI: https://doi.org/10.1007/7854_2021_250
- Penhune, V. B., & de Villers-Sidani, E. (2014). Time for new thinking about sensitive periods. Frontiers in Systems Neuroscience, 8, 55. https://doi.org/10.3389/fnsys.2014.00055 DOI: https://doi.org/10.3389/fnsys.2014.00055
- Pool, E. M., Rehme, A. K., Fink, G. R., Eickhoff, S. B., & Grefkes, C. (2014). Handedness and effective connectivity of the motor system. NeuroImage, 99, 451-460. https://doi.org/10.1016/j.neuroimage.2014.05.048 DOI: https://doi.org/10.1016/j.neuroimage.2014.05.048
- Ragert, P., Schmidt, A., Altenmüller, E., & Dinse, H. R. (2004), Superior tactile performance and learning in professional pianists: evidence for meta-plasticity in musicians. European Journal of Neuroscience, 19(2), 473-478. https://doi.org/10.1111/j.0953-816X.2003.03142.x DOI: https://doi.org/10.1111/j.0953-816X.2003.03142.x
- Ramos-Loyo, J., González-Garrido, A. A., Llamas-Alonso, L. A., & Sequeira, H. (2022). Sex differences in cognitive processing: An integrative review of electrophysiological findings. Biological Psychology, 172, 108370. https://doi.org/10.1016/j.biopsycho.2022.108370 DOI: https://doi.org/10.1016/j.biopsycho.2022.108370
- Ritchie, S. J., Cox, S. R., Shen, X., Lombardo, M. V., Reus, L. M., Alloza, C., Harris, M. A., Alderson, H. L., Hunter, S., Neilson, E., Liewald, D. C. M., Auyeung, B., Whalley, H. C., Lawrie, S. M., Gale, C. R., Bastin, M. E., McIntosh, A.M., & Deary, I. J. (2018). Sex Differences in the Adult Human Brain: Evidence from 5216 UK BiobankParticipants. Cerebral Cortex, 28(8), 2959-2975. https://doi.org/10.1093/cercor/bhy109 DOI: https://doi.org/10.1093/cercor/bhy109
- Rose, D., Bartoli, A. J., & Heaton, P. (2019). Formal-informal musical learning, sex and musicians’ personalities. Personality and Individual Differences, 142, 207-213. https://doi.org/10.1016/j.paid.2018.07.015 DOI: https://doi.org/10.1016/j.paid.2018.07.015
- Ruigrok, A. N. V., Salimi-Khorshidi, G., Lai. M-C., Baron-Cohen, S., Lombardo, M. V., Tait R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Neuroscience and Biobehavioral Reviews, 39(100), 34-50. https://doi.org/10.1016/j.neubiorev.2013.12.004 DOI: https://doi.org/10.1016/j.neubiorev.2013.12.004
- Shahin, A., Bosnyak, D. J., Trainor, L. J., & Roberts, L. E. (2003). Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians. The Journal of Neuroscience, 23(13), 5545-5552. https://doi.org/10.1523/JNEUROSCI.23-13-05545.2003 DOI: https://doi.org/10.1523/JNEUROSCI.23-13-05545.2003
- Shahin, A. J., Roberts, L. E., Chau, W., Trainor, L. J., & Miller, L. M. (2008). Music training leads to the development of timbre-specific gamma band activity. Neuroimage, 41(1), 113-122. https://doi.org/10.1016/j.neuroimage.2008.01.067 DOI: https://doi.org/10.1016/j.neuroimage.2008.01.067
- Shahin, A., Roberts, L. E., & Trainor, L. J. (2004). Enhancement of auditory cortical development by musical experience in children. Neuroreport, 15(12), 1917-1921. https://doi.org/10.1097/00001756-200408260-00017 DOI: https://doi.org/10.1097/00001756-200408260-00017
- Schlaug, G. (2008). Music, musicians, and brain plasticity. En S. Hallam, I. Cross & M. Thaut (Eds). Oxford Handbook of Music Psychology. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199298457.013.0018 DOI: https://doi.org/10.1093/oxfordhb/9780199298457.013.0018
- Schlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. En E. Altenmüller, S. Finger, & F. Boller (Eds.). Progress in Brain Research. Music, Neurology, and Neuroscience: Evolution, the Musical Brain, Medical Conditions, and Therapies, 217 (pp. 37-55). Elsevier. DOI: https://doi.org/10.1016/bs.pbr.2014.11.020
- Schulze, K., Gaab, N., & Schlaug, G. (2009). Perceiving pitch absolutely: Comparing absolute and relative pitch possessors in a pitch memory task. BMC Neuroscience, 10, 106. https://doi.org/10.1186/1471-2202-10-106 DOI: https://doi.org/10.1186/1471-2202-10-106
- Seppänen, M., Brattico, E., & Tervaniemi, M. (2007). Practice strategies of musicians modulate neural processing and the learning of sound-patterns. Neurobiology of Learning and Memory, 87(2), 236-247. https://doi.org/10.1016/j.nlm.2006.08.011 DOI: https://doi.org/10.1016/j.nlm.2006.08.011
- Seppänen, M., Hämäläinen, J., Pesonen, A.-K., & Tervaniemi, M. (2012). Music training enhances rapid neural plasticity of n1 and p2 source activation for unattended sounds. Frontiers in Human Neuroscience, 6, 43. https://doi.org/10.3389/fnhum.2012.00043 DOI: https://doi.org/10.3389/fnhum.2012.00043
- Shenker, J. J., Steele, C. J., Chakravarty, M. M., Zatorre, R. J., & Penhune, V. B. (2022). Early musical training shapes cortico-cerebellar structural covariation. Brain Structure & Function, 227(1), 407-419. https://doi.org/10.1007/s00429-021-02409-2 DOI: https://doi.org/10.1007/s00429-021-02409-2
- Steele, C. J., Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2013). Early Musical Training and White-Matter Plasticity in the Corpus Callosum: Evidence for a Sensitive Period. Journal of Neuroscience, 33(3), 1282-1290. https://doi.org/10.1523/JNEUROSCI.3578-12.2013 DOI: https://doi.org/10.1523/JNEUROSCI.3578-12.2013
- Swaminathan, S. & Schellenberg, E. G. (2018). Musical Competence is Predicted by Music Training, Cognitive Abilities, and Personality. Scientific Reports, 8(1), 9223. https://doi.org/10.1038/s41598-018-27571-2 DOI: https://doi.org/10.1038/s41598-018-27571-2
- Tan, Y. T., McPherson, G. E., Peretz, I., Berkovic, S. F., & Wilson, S. J. (2014). The genetic basis of music ability. Frontiers in Psychology, 5, 658. https://doi.org/10.3389/fpsyg.2014.00658 DOI: https://doi.org/10.3389/fpsyg.2014.00658
- Tervaniemi, M., Janhunen, L., Kruck, S., Putkinen, V., & Huotilainen, M. (2016). Auditory Profiles of Classical, Jazz, and Rock Musicians: Genre-Specific Sensitivity to Musical Sound Features. Frontiers in Psychology, 6, 1900. https://doi.org/10.3389/fpsyg.2015.01900 DOI: https://doi.org/10.3389/fpsyg.2015.01900
- Tervaniemi, M., Rytkönen, M., Schröger, E., Ilmoniemi, R. J., & Näätänen, R. (2001). Superior formation of cortical memory traces for melodic patterns in musicians. Learning & Memory, 8(5), 295-300. https://doi.org/10.1101/lm.39501 DOI: https://doi.org/10.1101/lm.39501
- van Vugt, F. T., Hartmann, K., Altenmüller, E., Mohammadi, B., & Margulies, D.S. (2021). The impact of early musical training on striatal functional connectivity. Neuroimage, 238, 118251. https://doi.org/10.1016/j.neuroimage.2021.118251 DOI: https://doi.org/10.1016/j.neuroimage.2021.118251
- Vaquero, L., Hartmann, K., Ripollés, P., Rojo, N., Sierpowska, J., François, C., Càmara, E., van Vugt, F. T., Mohammadi, B., Samii, A., Münte, T. F., Rodríguez-Fornells, A., & Altenmüller, E. (2016). Structural neuroplasticity in expert pianists depends on the age of musical training onset. Neuroimage, 126, 106-119. https://doi.org/10.1016/j.neuroimage.2015.11.008 DOI: https://doi.org/10.1016/j.neuroimage.2015.11.008
- Vaquero, L., Rousseau, P. N., Vozian, D., Klein, D., & Virginia, P. (2020). What you learn & when you learn it: Impact of early bilingual & music experience on the structural characteristics of auditory-motor pathways. Neuroimage, 213, 116689. https://doi.org/10.1016/j.neuroimage.2020.116689 DOI: https://doi.org/10.1016/j.neuroimage.2020.116689
- Voskuhl, R. & Klein, S. (2019). Sex is a variable in the brain too. Nature, 568(7751), 171. https://doi.org/10.1038/d41586-019-01141-6 DOI: https://doi.org/10.1038/d41586-019-01141-6
- Vuust, P., Brattico, E., Seppänen, M., Näätänen, R., & Tervaniemi, M. (2012a). Practiced musical style shapes auditory skills. Annals of the New York Academy of Sciences, 1252(1), 139-146. https://doi.org/10.1111/j.1749-6632.2011.06409.x DOI: https://doi.org/10.1111/j.1749-6632.2011.06409.x
- Vuust, P., Brattico, E., Seppänen, M., Näätänen, R., & Tervaniemi, M. (2012b). The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50(7), 1432-1443. https://doi.org/10.1016/j.neuropsychologia.2012.02.028 DOI: https://doi.org/10.1016/j.neuropsychologia.2012.02.028
- Wan, C., & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. Neuroscientist, 16(5), 566-577. https://doi.org/10.1177/1073858410377805 DOI: https://doi.org/10.1177/1073858410377805
- Walhovd, K.B., Fjell, A. M., Reinvang, I., Lundervold, A., Dale, A. M., Eilertsen, D. E., Quinn, B. T., Salat, D., Makris, N., & Fischl, B. (2005). Effects of age on volumes of cortex, white matter and subcortical structures. Neurobioly of Aging, 26(9), 1261-1270. https://doi.org/10.1016/j.neurobiolaging.2005.05.020 DOI: https://doi.org/10.1016/j.neurobiolaging.2005.05.020
- Walhovd, K. B., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I. R., Raz, N., Agartz, I., Salat, D. H., Greve, D. N., Fischl, B., Dale, A. M., & Fjell, A. M. (2011). Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiology of Aging, 32(5), 916-932. https://doi.org/10.1016/j.neurobiolaging.2009.05.013 DOI: https://doi.org/10.1016/j.neurobiolaging.2009.05.013
- Ward, W. D., & Burns, E. M. (1982). Absolute Pitch. En D. Deutsch (Ed.). The Psychology of music (pp. 431-451). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-213562-0.50018-8
- Watanabe, D., Savion-Lemieux, T., & Penhune, V. B. (2007). The effect of early musical training on adult motor performance: evidence for a sensitive period in motor learning. Experimental Brain Research, 176(2), 332-340. https://doi.org/10.1007/s00221-006-0619-z DOI: https://doi.org/10.1007/s00221-006-0619-z
- Wengenroth, M., Blatow, M., Heinecke, A., Reinhardt, J., Stippich, C., Hofmann, E., & Schneider, P. (2014). Increased Volume and Function of Right Auditory Cortex as a Marker for Absolute Pitch. Cerebral Cortex, 24(5), 1127-1137. https://doi.org/10.1093/cercor/bhs391 DOI: https://doi.org/10.1093/cercor/bhs391
- Wenhart, T., Bethlehem, R., Baron-Cohen, S., & Altenmüller, E. (2019). Autistic traits, resting-state connectivity, and absolute pitch in professional musicians: shared and distinct neural features. Molecular autism, 10, 20. https://doi.org/10.1186/s13229-019-0272-6 DOI: https://doi.org/10.1186/s13229-019-0272-6
- White-Schwoch, T., Carrr, K. W., Anderson, S., Strait, D. L., & Kraus, N. (2013). Older adults benefit from music training early in life: biological evidence for long-term training-driven plasticity. The Journal of Neuroscience, 33(45), 17667-17674. https://doi.org/10.1523/JNEUROSCI.2560-13.2013 DOI: https://doi.org/10.1523/JNEUROSCI.2560-13.2013
- Wilson, S. J., Lusher, D., Wan, C. Y., Dudgeon, P., & Reutens, D. C. (2009). The neurocognitive components of pitch processing: insights from absolute pitch. Cerebral Cortex, 19, 724-732. https://doi.org/10.1093/cercor/bhn121 DOI: https://doi.org/10.1093/cercor/bhn121
- Wizemann, T. M., & Pardue, M. L. (eds.) (2001). Exploring the Biological Contributions to Human Health: Does Sex Matter?. National Academies Press.
- Zarate, J. M., & Zatorre, R. J. (2008). Experience-dependent neural substrates involved in vocal pitch regulation during singing. Neuroimage, 40(4), 1871-1887. https://doi.org/10.1016/j.neuroimage.2008.01.026 DOI: https://doi.org/10.1016/j.neuroimage.2008.01.026
- Zatorre, R. J. (2003). Absolute Pitch: A Model for Understanding the Influence of Genes and Development on Neural and Cognitive Function. Nature Neuroscience, 6(7), 692-695. https://doi.org/10.1038/nn1085 DOI: https://doi.org/10.1038/nn1085
- Zatorre, R. J. (2013). Predispositions and Plasticity in Music and Speech Learning: Neural Correlates and Implications. Science, 342(6158), 585-589. https://doi.org/10.1126/science.1238414 DOI: https://doi.org/10.1126/science.1238414
- Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3172-3177. https://doi.org/10.1073/pnas.95.6.3172 DOI: https://doi.org/10.1073/pnas.95.6.3172
- Zhu, Y. (2018). Influence of music training on the plasticity of the brain. NeuroQuantology, 16(5), 234-239. https://doi.org/.14704/nq.2018.16.5.1409 DOI: https://doi.org/10.14704/nq.2018.16.5.1409