Las prácticas artísticasuna visión neurocientífica

  1. Albusac Jorge, Miriam 1
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Tercio creciente

ISSN: 2340-9096

Año de publicación: 2022

Número: 21

Páginas: 95-112

Tipo: Artículo

DOI: 10.17561/RTC.21.5765 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Tercio creciente

Resumen

Las bases neuronales que subyacen en las prácticas artísticas han sido estudiadas por la neurociencia, haciendo uso de las metodologías y técnicas de registro que le son propias, con el objetivo de entender cómo el cerebro procesa el arte. Sin embargo, la investigación sobre el arte como medio para inducir plasticidad es aún limitada. Este texto revisa la literatura científica que vincula diversas manifestaciones artísticas –como la danza o las artes visuales– con cambios plásticos estructurales y funcionales a nivel cerebral.

Referencias bibliográficas

  • Albusac-Jorge, Miriam (2019). Música, aprendizaje, experiencia y plasticidad cerebral. En Campos de investigación de vanguardia. Madrid: Pirámide (col. Ediciones Universitarias).
  • Avanzini, Giuliano; Faienza, Carmine; Lopez, Luisa; Majno, María; & Minciacchi, Diego (2003). General Foreword. Annals of the New York Academy of Sciences, 999(1), xi-xii. Doi: 10.1196/annals.1284.070.
  • Bar, Rachel J.; & DeSouza, Joseph, F. X. (2016). Tracking Plasticity: Effects of Long-Term Rehearsal in Expert Dancers Encoding Music to Movement. Plos One, 11(1), e0147731. Doi: 10.1371/journal.pone.0147731.
  • Baumann, Simon; Koeneke, Susan; Schmidt, Conny F.; Meyer, Martin; Lutz, Kai; & Jancke, Lutz (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65-78. Doi: 10.1016/j.brainres.2007.05.045.
  • Bermudez, Patrick; & Zatorre, Robert J. (2005). Differences in Gray Matter between Musicians and Nonmusicians. Annals of the New York Academy of Sciences, 1060(1), 395- 399. Doi: 10.1196/annals.1360.057.
  • Bhattacharya, Joydeep; & Petsche, Hellmuth (2002). Shadows of artistry: cortical synchrony during perception and imagery of visual art. Brain research. Cognitive brain research, 13(2),179-186. Doi:10.1016/s0926-6410(01)00110-0.
  • Bhattacharya, Joydee; & Petsche, Hellmuth (2005). Drawing on mind’s canvas: differences in cortical integration patterns between artists and non-artists. Human Brain Mapping, 26(1) 1-14. Doi: 10.1002/hbm.20104.
  • Bhattacharya, Joydee (2009). Increase of Universality in Human Brain during Mental Imagery from Visual Perception. Plos One 4(1), e4121. Doi: 10.1371/journal.pone.0004121.
  • Bläsing, Bettina; Calvo-Merino, Beatriz; Cross, Emily; Jola, Corinne; Honisch, Juliane; & Stevens, Catherine J. (2012). Neurocognitive control in dance perception and performance. Acta Psychologica, 139(2), 300-308. Doi: 10.1016/j.actpsy.2011.12.005.
  • Bläsing, Bettina; Puttke-Voss, Martin; & Schack, Thomas (Eds.) (2019). The neurocognition of dance: Mind, movement and motor skills. New York: Routledge.
  • Brown, Steven; Martínez, Michael J.; & Parsons, Lawrence M. (2006). The neural basis of human dance. Cerebral Cortex, 16(8), 1157-1167. Doi:10.1093/cercor/bhj057.
  • Brown, Steven; & Parsons, Lawrence M. (2008). The neuroscience of dance. Scientific American, 299(1), 78-83. Doi: 10.1038/scientificamerican0708-78.
  • Burzynska, Agnieszka Z.; Finc, Karolina; Taylor, Brittany K.; Knecht, Anya M.; & Kramer, Arthur F. (2017). The Dancing Brain: Structural and Functional Signatures of Expert Dance Training. Frontiers in human neuroscience, 11, 566. Doi: 10.3389/fnhum.2017.00566.
  • Cela-Conde, Camilo José; Marty, Gisèle; Maestú, Fernando; Ortiz, Tomás; Munar, Eric; Fernández, Alberto; … Quesney, Felipe (2004). Activation of the prefrontal cortex in the human visual aesthetic perception. Proceedings of the National Academy of Sciences of the United States of America, 101(16), 6321-6325. Doi: 10.1073/pnas.0401427101. Recuperado de https://tinyurl.com/yyfcqnha
  • Calvo-Merino, Beatriz; Glaser, Daniel E.; Grezes, Julie; Passingham, Richard E.; & Haggard, Patrick (2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex 15(8), 1243-1249. Doi: 10.1093/cercor/bhi007.
  • Calvo-Merino, Beatriz; Jola, Corinne; Glaser, Daniel E.; & Haggard, Patrick (2008). Towards a sensorimotor aesthetics of performing art. Consciousness and cognition, 17(3), 911-922. Doi: 10.1016/j.concog.2007.11.003.
  • D’Ausilio, Alessandro; Altenmüller, Eckart; Olivetti Belardinelli, Marta; & Lotze, Martin (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. The European Journal of Neuroscience, 24(3), 955-958. Doi: 10.1111/j.1460-9568.2006.04960.x. Recuperado de https://tinyurl.com/y24fbp93
  • Dewey, John (1934). Art as experience. New York: Minton, Balch & Company.
  • Eklund, Andres; Nichols, Thomas; Andersson, Mats; & Knutsson, Hans (2015). Empirically investigating the statistical validity of SPM, FSL and AFNI for single subject fMRI analysis. IEEE 12th International Symposium on Biomedical Imaging (ISBI) (pp. 1376-1380). New York. Doi: 10.1109/ISBI.2015.7164132.
  • Fauvel, Baptiste; Groussard, Mathilde; Chételat, Gaël; Fouquet, Marine; Landeau, Brigitte, Eustache, Francis, … Platel, Hervé (2014). Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest. NeuroImage, 90, 179-188. Doi: 10.1016/j.neuroimage.2013.12.065.
  • Fink, Andreas; Graif, Barbara; & Neubauer, Aljoscha. C. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. Neuroimage, 46(3), 854-862. Doi: 10.1016/j.neuroimage.2009.02.036.
  • Gaser, Christian; & Schlaug, Gottfried. (2003). Gray matter differences between musicians and nonmusicians. Annals of the New York Academy of Sciences, 999(1), 514-517. Doi: 10.1196/annals.1284.062.
  • Gebel, Benjamin; Braun, Christoph; Kaza, Evangelia; Altenmüller, Eckart; & Lotze, Martin (2013). Instrument specific brain activation in sensorimotor and auditory representation in musicians. NeuroImage, 74, 37-44. Doi: 10.1016/j.neuroimage.2013.02.021.
  • Giacosa, Chiara; Karpati, Falisha J.; Foster, Nicholas E. V.; Penhune, Virginia B.; & Hyde, Krista L. (2016). Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. NeuroImage, 135, 273-286. Doi: 10.1016/j.neuroimage.2016.04.048.
  • Giacosa, Chiara; Karpati, Falisha J.; Foster, Nicholas E. V.; Hyde, Krista L.; & Penhune, Virginia B. (2019). The descending motor tracts are different in dancers and musicians. Brain Structure and Function, 224, 3229-3246. Doi: 10.1007/s00429-019-01963-0. Recuperado de https://tinyurl.com/yy2l3cmb Gujing, Li; Hui, He; Xin, Li; Lirong, Zhang; Yutong, Yao; Guofeng, Ye; … Dezhon, Yao (2019). Increased Insular Connectivity and Enhanced Empathic Ability Associated with Dance/Music Training. Neural Plasticity, 9693109. Doi: 10.1155/2019/9693109.
  • Han, Ying; Yang, Hong; Lv, Ya-Ting; Zhu, Chao-Zhe, He, Yong; Tang, He-Han; … Dong, Qi (2009). Gray matter density and white matter integrity in pianists’ brain: a combined structural and diffusion tensor MRI study. Neuroscience Letters, 459(1), 3-6. Doi: 10.1016/j.neulet.2008.07.056.
  • Hänggi, Jürgen; Koeneke, Susan; Bezzola, Ladina; & Jäncke, Lutz (2010). Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Human Brain Mapping, 31(8), 1196-1206. Doi: 10.1002/hbm.20928.
  • Herdener, Marcus; Esposito, Fabrizio; di Salle, Francesco; Boller, Christian; Hilti, Caroline C., Habermeyer, Benedikt; … Cattapan-Ludewig, Katja (2010). Musical Training Induces Functional Plasticity in Human Hippocampus. The Journal of Neuroscience, 30(4), 1377-1384. Doi: 10.1523/JNEUROSCI.4513-09.2010.
  • Herholz, Sibylle C; & Zatorre, Robert J. (2012). Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron, 76(3), 486-502. Doi: 10.1016/j.neuron.2012.10.011.
  • Huang, Ruiwang; Lu, Min; Song, Zheng; & Wang, Jun (2015). Long-term intensive training induced brain structural changes in world class gymnasts. Brain Structure and Function, 220(2), 625-644. Doi. 10.1007/s00429-013-0677-5.
  • Hutchinson, Siobhan; Lee, Leslie Hui-Lin; Gaab, Nadine; & Schlaug, Gottfried (2003). Cerebellar volume of musicians. Cerebral Cortex, 13(9), 943-949. Doi: 10.1093/cercor/13.9.943.
  • Jäncke, Lutz; Shah, Nadim Jon; & Peters, Michael (2000). Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Cognitive Brain Research, 10(1-2), 177-183. Doi: 10.1016/S0926-6410(00)00028-8.
  • Karpati, Falisha J.; Giacosa, Chiara; Foster, Nicholas E. V.; Penhune, Virginia B; & Hyde, Krista L. (2015). Dance and the brain: a review. Annals of the New York Academy of Sciences, 1337, 140-146. Doi:10.1111/nyas.12632.
  • Karpati, Falisha J.; Giacosa, Chiara; Foster, Nicholas E. V.; Penhune, Virginia B; & Hyde, Krista L. (2017). Dance and music share gray matter structural correlates. Brain Research, 1657, 62-73. Doi: 10.1016/j.brainres.2016.11.029.
  • Karpati, Falisha J.; Giacosa, Chiara; Foster, Nicholas E. V.; Penhune, Virginia B; & Hyde, Krista L. (2018). Structural Covariance Analysis Reveals Differences Between Dancers and Untrained Controls. Frontiers in Human Neuroscience, 12, 373. Doi: 10.3389/fnhum.2018.00373.
  • Kawabata, Hideaki; & Zeki, Semir (2004). Neural correlates of beauty. Journal of neurophysiology, 91(4), 1699-705. Doi: 10.1152/jn.00696.2003.
  • Kelly, A. M. Clare; & Garavan, Hugh (2015). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 1089-1102. Doi: 10.1093/cercor/bhi005.
  • Kim, Young Jae; Cha, Eun Joo; Kang, Kyoung Doo; Kim, Bung-Nyun; & Han, Doug Hyun (2016). The effects of sport dance on brain connectivity and body intelligence. Journal of Cognitive Psychology, 28(5), 611-617. Doi: 10.1080/20445911.2016.1177059.
  • Koeneke, Susan; Lutz, Kai; Wüstenberg, Torsten; & Jäncke, Lutz (2004). Long-term training affects cerebellar processing in skilled keyboard players. Neuroreport, 15(8), 1279-1282. Doi: 10.1097/01.wnr.0000127463.10147.e7.
  • Kottlow, Mara; Praeg, Elke; Luethy, Christine; & Jäncke, Lutz (2011). Artists’ advance: decreased upper alpha power while drawing in artists compared with non-artists. Brain Topography, 23(4), 392-402. Doi: 10.1007/s10548-010-0163-9.
  • Lee, Dennis J.; Chen, Yi; & Schlaug, Gottfried (2003). Corpus callosum: musician and gender effects. Neuroreport, 14(2), 205-209. Doi: 10.1097/01.wnr.0000053761.76853.41.
  • Lin, Chia-Shu; Liu, Yong; Huang, Wei-Yuan; Lu, Chia-Feng; Teng, Shin; Ju Tzong-Ching; … Hsieh, Jen-Chuen (2013). Sculpting the Intrinsic Modular Organization of Spontaneous Brain Activity by Art. Plos One, 8(6), e66761. Doi: 10.1371/journal.pone.0066761.
  • Livingstone, M. (2002). Vision and Art: The Biology of Seeing. New York: Harry N. Abrams.
  • Lv, Ya-Ting; Yang, Hong; Wang, De-Yi; Li, Shu-Yu; Han, Ying; Zhu, Chao-Zhe; ... Zang, Yu-Feng (2008). Correlations in spontaneous activity and gray matter density between left and right sensorimotor areas of pianists. Neuroreport, 19(6), 631-634. Doi: 10.1097/WNR.0b013e3282fa6da0.
  • Makuuchi, Michiru; Kaminaga, Tatsuro; & Sugishita, Morihiro (2003). Both parietal lobes are involved in drawing: a functional MRI study and implications for constructional apraxia. Brain research. Cognitive brain research, 16(3), 338-347. Doi: 10.1016/s0926-6410(02)00302-6.
  • Meier, Jessica; Topka, Marlene Sofie; & Hänggi, Jürgen (2016). Differences in cortical representation and structural connectivity of hands and feet between professional handball players and ballet dancers. Neural Plasticity, 6817397. Doi: 10.1155/2016/6817397.
  • Murillo-García, Álvaro; Villafaina, Santos; Collado-Mateo, Daniel; León-Llamas, Juan Luis; & Gusi, Narcis (2020). Effect of dance therapies on motor-cognitive dual-task performance in middle-aged and older adults: a systematic review and meta-analysis. Disability and Rehabilitation. Doi: 10.1080/09638288.2020.1735537.
  • Müller, Patrick; Rehfeld, Kathrin; Schmicker, Marlen; Hökelmann, Anita; Dordevic, Milos; Lessmann, Volkmar; … Müller, Notger G. (2017). Evolution of Neuroplasticity in Response to Physical Activity in Old Age: The Case for Dancing. Frontiers in aging neuroscience, 9, 56. Doi: 10.3389/fnagi.2017.00056.
  • Nigmatullina, Yuliya; Hellyer, Peter J.; Nachev, Parashkev; Sharp, David J.; & Seemungal, Barry M. (2015). The neuroanatomical correlates of training-related perceptuo-reflex uncoupling in dancers. Cerebral Cortex, 25(2), 554-562. Doi: 10.1093/cercor/bht266.
  • Ohnishi, Takashi; Matsuda, Hiroshi; Asada, Takashi; Aruga, Makoto; Hirakata, Makiko; Nishikawa, Masami; ... Imabayashi, Etsuko (2001). Functional anatomy of musical perception in musicians. Cerebral Cortex, 11(8), 754-760. Doi: 10.1093/cercor/11.8.754.
  • Orlandi, Andrea; Zani, Alberto; & Proverbio, Alice Mado (2017). Dance expertise modulates visual sensitivity to complex biological movements. Neuropsychologia, 104, 168-181. Doi: 10.1016/j.neuropsychologia.2017.08.019.
  • Palomar-García, María Ángeles; Zatorre, Robert J.; Ventura-Campos, Noelia; Bueichekú, Elisenda; & Ávila, César (2017). Modulation of Functional Connectivity in Auditory–Motor Networks in Musicians Compared with Nonmusicians. Cerebral Cortex, 27(5), 2768-2778. Doi: 10.1093/cercor/bhw120.
  • Pauli, Ruth; Bowring, Alexander; Reynolds, Richard; Chen, Gang; Nichols, Thomas E.; & Maumet, Camille (2016). Exploring fMRI Results Space: 31 Variants of an fMRI Analysis in AFNI, FSL, and SPM. Frontiers in Neuroinformatics, 10, 24. Doi: 10.3389/fninf.2016.00024.
  • Poikonen, Hanna; Toiviainen, Petri; & Tervaniemi, Mari (2018a). Dance on cortex: enhanced theta synchrony in experts when watching a dance piece. The European journal of neuroscience, 47(5), 433-445. Doi:10.1111/ejn.13838.
  • Poikonen, Hanna; Toiviainen, Petri; & Tervaniemi, Mari (2018b). Naturalistic music and dance: Cortical phase synchrony in musicians and dancers. Plos One, 13(4), e0196065. Doi: 10.1371/journal.pone.0196065.
  • Porat, Shai; Goukasian, Naira; Hwang, Kristy S.; Zanto, Theodore; Do, Triet; Pierce, Jonathan; … Apostolova, Liana G. (2016). Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population. Dementia and geriatric cognitive disorders extra, 6(3), 508-517. Doi: 10.1159/000449130.
  • Preminger, Son (2012). Transformative art: art as means for long-term neurocognitive change. Frontiers in Human Neuroscience, 6, article 96. Doi: 10.3389/fnhum.2012.00096.
  • Ramachandran, Vilayanur S.; & Hirstein, William (1999). The science of art: a neurological theory of aesthetic experience. Journal of Consciousness Studies, 6, (6-7), 15-51.
  • Rehfeld, Kathrin; Müller, Patrick; Aye, Norman; Schmicker, Marlen; Dordevic, Milos; Kaufmann, Jörn; … Müller, Notger G. (2017). Dancing or fitness sport? The effects of two training programs on hippocampal plasticity and balance abilities in healthy seniors. Frontiers in Human Neuroscience, 11, 305. Doi: 10.3389/fnhum.2017.00305.
  • Rehfeld, Kathrin; Lüders, Angie; Hökelmann, Anita; Lessmann, Volkmar; Kaufmann, Joern; … Müller, Notger G. (2018). Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. Plos One, 13(7), e0196636. Doi: 10.1371/journal.pone.0196636.
  • Rosenkranz, Karin; Williamon, Aaron; & Rothwell, John C. (2007). Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. The Journal of Neuroscience, 27(19), 5200-5206. Doi: 10.1523/JNEUROSCI.0836-07.2007.
  • Schlaug, Gottfried; Forgeard, Marie; Zhu, Lin; Norton, Andrea; Norton, Andrew; & Winner, Ellen (2009). Training-induced neuroplasticity in young children. Annals of the New York Academy of Sciences, 1169, 205-208. Doi: 10.1111/j.1749-6632.2009.04842.x.
  • Schlaug, Gottfried (2015). Musicians and music making as a model for the study of brain plasticity. En E. Altenmüller, S. Finger, & F. Boller (Eds.), Progress in Brain Research. Music, Neurology, and Neuroscience: Evolution, the Musical Brain, Medical Conditions, and Therapies (Vol. 217, pp. 37-55). Amsterdan: Elsevier. Doi: 10.1016/bs.pbr.2014.11.020.
  • Solso, Robert L. (2001). Brain activities in a skilled versus a novice artist: an fMRI study. Leonardo 34(1), 31-34. Doi: 10.1162/002409401300052479.
  • Steele, Christopher J.; Bailey, Jennifer A.; Zatorre, Robert J.; & Penhune, Virginia B. (2013). Early Musical Training and White-Matter Plasticity in the Corpus Callosum: Evidence for a Sensitive Period. Journal of Neuroscience, 33(3), 1282-1290. Doi: 10.1523/JNEUROSCI.3578-12.2013.
  • Strait, Dana L.; Chan, Karen; Ashley, Richard; & Kraus, Nina (2012). Specialization among the specialized: auditory brainstem function is tuned in to timbre. Cortex, 48(3), 360-362. Doi: 10.1016/j.cortex.2011.03.015.
  • Teixeira-Machado, Lavinia; Arida, Ricardo Mario; & de Jesús Mari, Jair (2019). Dance for neuroplasticity: A descriptive systematic review. Neuroscience & Biobehavioral Reviews, 96, 232-240. Doi: 10.1016/j.neubiorev.2018.12.010.
  • Vollmann, Henning; Ragert, Patrick; Conde, Virginia; Villringer, Arno; Classen, Joseph; Witte, Otto W.; & Steele, Christopher J. (2014). Instrument specific use-dependent plasticity shapes the anatomical properties of the corpus callosum: a comparison between musicians and non-musicians. Frontiers in Behavioral Neuroscience, 8, 245. Doi: 10.3389/fnbeh.2014.00245.
  • Wan, Catherine Y.; & Schlaug, Gottfried (2010). Music making as a tool for promoting brain plasticity across the life span. Neuroscientist, 16(5), 566-577. Doi: 10.1177/1073858410377805.
  • Zatorre, Robert J. (2003). Music and the Brain. Annals of the New York Academy of Sciences, 999(1), 4-14. Doi: 10.1196/annals.1284.001.
  • Zatorre, Robert J.; & Peretz, Isabelle (2001). The biological foundations of music. New York: New York Academy of Sciences.
  • Zatorre, Robert (2005). Music, the food of neuroscience? Nature, 434(7031), 312-315. Doi: 10.1038/434312a.
  • Zatorre, Robert J.; & Salimpoor, Valorie N. (2013). From perception to pleasure: Music and its neural substrates. Proceedings of the National Academy of Sciences, 110 (Supplement 2), 10430-10437. Doi: 10.1073/pnas.1301228110.
  • Zeki, S. (1998). Art and the Brain. Daedalus, 127(2), 71-103.
  • Zeki S. (1999). Inner Vision: An Exploration of Art and the Brain. Oxford: Oxford University Press.