Geometrical study of Middle Kingdom funerary complexes in Qubbet el-Hawa (Aswan, Egypt) based on 3D models

  1. Mozas-Calvache, Antonio Tomás 1
  2. Pérez-García, José Luis 1
  3. Gómez-López, José Miguel 1
  1. 1 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

Revista:
Virtual Archaeology Review

ISSN: 1989-9947

Año de publicación: 2023

Volumen: 14

Número: 28

Páginas: 1-18

Tipo: Artículo

DOI: 10.4995/VAR.2023.18418 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Virtual Archaeology Review

Resumen

Este estudio describe la metodología desarrollada y los principales resultados obtenidos al analizar el comportamiento geométrico de tres estructuras funerarias contiguas situadas en el sur de Egipto. Las tumbas excavadas en la roca están compuestas de estructuras complejas como salas, pasillos, cámaras y pozos. Entre otros aspectos, esta complejidad condicionaba en gran medida la adquisición de datos y el trabajo de procesado. En este contexto, el objetivo principal de este estudio fue desarrollar una nueva metodología para obtener productos geomáticos que facilitaran un análisis geométrico completo de las tumbas. Se han realizado diversos levantamientos fotogramétricos y de escaneado láser terrestre para obtener modelos 3D de precisión en un mismo sistema de referencia. El procedimiento utilizado incluyó la obtención de varios productos secundarios, como varias geometrías (planos y cilindros) ajustadas desde las nubes de puntos, o planos y secciones obtenidas de los modelos 3D. El análisis geométrico ha incluido distintos aspectos de la geometría: dimensiones, proporciones, orientaciones, planeidad de muros, inclinaciones, etc., y está basado en estos productos. Los resultados obtenidos sugieren y confirman ciertas hipótesis acerca de los aspectos constructivos de estos hipogeos basados en una gran cantidad de datos, incluyendo la determinación de un canon proporcional utilizado por los antiguos egipcios para planificar y ejecutar los trabajos de excavación de cada estructura funeraria. La aplicación de esta metodología ha demostrado que este tipo de análisis es viable para detectar algunos aspectos importantes de estas estructuras y de los procedimientos constructivos llevados a cabo hace casi cuatro milenios.

Referencias bibliográficas

  • Ahmon, J. (2004). The application of short-range 3D laser scanning for archaeological replica production: the Egyptian tomb of Seti I. The Photogrammetric Record, 19(106), 111-127. https://doi.org/10.1111/j.1477-9730.2004.00034.x
  • Alshawabkeh, Y., & Haala, N. (2004). Integration of digital photogrammetry and laser scanning for heritage documentation. The International Archives of Photogrammetry and Remote Sensing, 35, B5.
  • Angelini, A., Vittozzi, G. C., & Baldi, M., (2016). The high official Harkhuf and the inscriptions of his tomb in Aswan (Egypt). An integrated methodological approach. Acta IMEKO, 5(2), 71-79. https://doi.org/10.21014/acta_imeko.v5i2.349
  • Barazzetti, L., Previtali, M., & Roncoroni, F. (2017a). 3D Modelling with the Samsung Gear 360. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2-W3, 85-90. https://doi.org/10.5194/isprs-archives-XLII-2-W3-85-2017
  • Barazzetti, L., Previtali, M., & Roncoroni, F. (2017b). Fisheye lenses for 3D modeling: evaluations and considerations. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W3, 79-84. https://doi.org/10.5194/isprs-archives-XLII-2-W3-79-2017
  • Barazzetti, L., Previtali, M., & Roncoroni, F. (2022) 3D modeling with 5K 360° videos. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-2/W1-2022, 65-71. https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-65-2022
  • Beraldin, J. A., Blais, F., Boulanger, P., Cournoyer, L., Domey, J., El-Hakim, S. F., Godin, G., Rioux, M., & Taylor, J. (2000). Real world modelling through high resolution digital 3D imaging of objects and structures. ISPRS Journal of Photogrammetry and Remote Sensing, 55(4), 230-250. https://doi.org/10.1016/S0924-2716(00)00013-7
  • Blockley, P., & Morandi, S. (2015). The recording of two late Roman towers, Archaeological Museum, Milan 3D documentation and study using image-based modelling. In Digital Heritage 2015, IEEE (pp. 103-106). Granada, Spain. https://doi.org/10.1109/DigitalHeritage.2015.7413845
  • Brutto, M. L., & Meli, P. (2012). Computer vision tools for 3D modelling in archaeology. International Journal of Heritage in the Digital Era, 1, 1-6. https://doi.org/10.1260/2047-4970.1.0.1
  • Campana, S. (2017). Drones in Archaeology. State‐of‐the‐art and Future Perspectives. Archaeological Prospection, 24(4), 275-296. https://doi.org/10.1002/arp.1569
  • Cardenal, J., Mata, E., Castro, P., Delgado, J., Hernandez, M. A., Pérez, J. L., Ramos, M., & Torres, M. (2004). Evaluation of a digital non metric camera (Canon D30) for the photogrammetric recording of historical buildings. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXV-B5, 564-569.
  • Celikoyan, T. M., Altan, M. O., Kemper, G., & Toz, G. (2003). Calibrating and using an Olympus camera for balloon photogrammetry. In Proc. XIXth International Symposium-CIPA 2003 (pp. 380-382). Antalya, Turkey.
  • Chandler, J. H., Fryer, J. G., & Jack, A. (2005). Metric capabilities of low‐cost digital cameras for close range surface measurement. The Photogrammetric Record, 20(109), 12-26. https://doi.org/10.1111/j.1477-9730.2005.00302.x
  • CIPA Heritage Documentation (2017). The photogrammetric capture. The '3x3' rules. Retrieved October 17, 2022, from https://www.cipaheritagedocumentation.org/
  • Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
  • Colonnese, F., Carpiceci, M., & Inglese, C. (2016). Conveying Cappadocia. A new representation model for rock-cave architecture by contour lines and chromatic codes. Virtual Archaeology Review, 7(14), 13-19. https://doi.org/10.4995/var.2016.5382
  • Covas, J., Ferreira, V., & Mateus, L., (2015). 3D reconstruction with fisheye images strategies to survey complex heritage buildings. In Digital Heritage 2015, IEEE (pp. 123-126). Granada, Spain. https://doi.org/10.1109/DigitalHeritage.2015.7413850
  • Echeverría, E., Celis, F., Morales, A., & da Casa, F. (2019). The Tomb of Ipi: 3D Documentation in a Middle Kingdom Theban Necropolis (Egypt, 2000 BCE). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W9, 319-324. https://doi.org/10.5194/isprs-archives-XLII-2-W9-319-2019
  • Edel, E. (2008). Die Felsgräbernekropole der Qubbet el Hawa bei Assuan: I. Abteilung (Band 1-3). Architektur, Darstellungen, Texte, archäologischer Befund und Funde der Gräber QH 24-QH 209. In K. J. Seyfried & G. Vieler (Eds.), Die Felsgräbernekropole der Qubbet el Hawa bei Assuan. Paderborn, Germany: Ferdinand Schöningh. https://doi.org/10.30965/9783657763436
  • Farella, E. M. (2016). 3D mapping of underground environments with a hand-held laser scanner. Bollettino della società italiana di fotogrammetria e topografia, 2, 1-10.
  • Fiorillo, F., Limongiello, M., & Fernández-Palacios, B. J. (2016). Testing GoPro for 3D model reconstruction in narrow spaces. Acta IMEKO, 5(2), 64-70. https://doi.org/10.21014/acta_imeko.v5i2.372
  • Furukawa, Y., & Hernández, C. (2015). Multi-view stereo: A tutorial. Foundations and Trends® in Computer Graphics and Vision, 9(1-2), 1-148. https://doi.org/10.1561/0600000052
  • Gardón-Ramos, V. (2021). The Geometrical Pattern in the Royal Architecture of Ancient Egypt during the Middle Kingdom. Historiae, (18), 45-70.
  • Georgopoulos, A., Karras, G. E., & Makris, G. N. (2003). The photogrammetric survey of a prehistoric site undergoing removal. The Photogrammetric Record, 16(93), 443-456. https://doi.org/10.1111/0031-868X.00135
  • Grussenmeyer, P., Landes, T., Voegtle, T., & Ringle, K. (2008). Comparison methods of terrestrial laser scanning, photogrammetry and tacheometry data for recording of cultural heritage buildings. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII/B5, 213-218.
  • Guarnieri, A., Remondino, F., & Vettore, A. (2006). Digital photogrammetry and TLS data fusion applied to Cultural Heritage 3D modeling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36 (Part 5).
  • Harrell, J. A. (2008). Tools used in ancient Egyptian construction. Encyclopedia of the History of Science, Technology, and Medicine in Non-Western Cultures (2nd ed.), (pp. 2158-2166). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-4425-0_9118
  • Hassani, F., Moser, M., Rampold, R., & Wu, C. (2015). Documentation of cultural heritage; techniques, potentials, and constraints. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 207. https://doi.org/10.5194/isprsarchives-XL-5-W7-207-2015
  • Joyanes-Diaz, M., Martinez-De Dios, J., Mozas-Calvache, A., Ruiz-Jaramillo, J., Muñoz-Gonzalez, C., & Jimenez-Serrano, A. (2022). Solar geometry and the organization of the annual cycle through architecture and the funerary landscape in Qubbet el Hawa. Mediterranean Archaeology and Archaeometry, 22(2), 209-235. https://www.doi.org/10.5281/zenodo.6815469
  • Kadobayashi, R., Kochi, N., Otani, H., & Furukawa, R. (2004). Comparison and evaluation of laser scanning and photogrammetry and their combined use for digital recording of cultural heritage. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(5), 401-406.
  • Koenderink, J. J., & Van Doorn, A. J. (1991). Affine structure from motion. Journal of the Optical Society of America A, 8(2), 377-385. https://doi.org/10.1364/JOSAA.8.000377
  • Lambers, K., & Remondino, F. (2007). Optical 3D measurement techniques in archaeology: recent developments and applications. In Proc. of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology (pp. 27-35). Berlin, Germany.
  • Lima de, R., & Vergauwen, M. (2018). From TLS recoding to VR environment for documentation of the Governor's Tombs in Dayr al-Barsha, Egypt. In 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (pp. 293-298). Munich, Germany.
  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  • Mandelli, A., Gobeil, C., Greco, C., & Rossi, C. (2021). Digital twin and 3d documentation of a Theban tomb at Deir Al-Medina (Egypt) using a multi-lenses photogrammetric approach. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2021, 591-597. https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-591-2021
  • Martínez, S., Ortiz, J., Gil, M. L., & Rego, M. T. (2013). Recording complex structures using close range photogrammetry: The cathedral of Santiago de Compostela. The Photogrammetric Record, 28(144), 375-395. https://doi.org/10.1111/phor.12040
  • Martínez Hermoso, J. A., Martínez Hermoso, F., de Paula Montes Tubío, F., & Jiménez Serrano, A. (2015). Geometry and proportions in the funeral chapel of Sarenput II. Nexus Network Journal, 17(1), 287-309. https://doi.org/10.1007/s00004-014-0218-4
  • Martínez-Hermoso, J. A., Mellado-García, I., Martínez de Dios, J. L., Martínez-Hermoso, F., Espejo-Jiménez, A., & Jiménez-Serrano, A. (2018). The construction of tomb group QH31 (Sarenput II) through QH33. Part I: The exterior of the funerary complexes. The Journal of Ancient Egyptian Architecture, 3, 25-44.
  • Mozas-Calvache, A. T., Pérez-García, J. L., Cardernal-Escarcena, F. J., Delgado, J., & Mata de Castro, E. (2012). Comparison of Low Altitude Photogrammetric Methods for Obtaining Dems and Orthoimages of Archaeological Sites. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B5, 577-581. https://doi.org/10.5194/isprsarchives-XXXIX-B5-577-2012
  • Mozas-Calvache, A. T., Pérez-García, J. L., Gómez-López, J. M., de Dios, J. M., & Jiménez-Serrano, A. (2020). 3D models of the QH31, QH32 and QH33 tombs in Qubbet el Hawa (Aswan, Egypt). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020, 1427-1434. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1427-2020
  • Nabil, M., Betrò, M., & Metwallya, M. N. (2013). 3D reconstruction of ancient Egyptian rockcut tombs: the case of Midan 05. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W2, 443-447. https://doi.org/10.5194/isprsarchives-XL-5-W2-443-2013
  • Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied Geomatics, 6(1), 1-15. https://doi.org/10.1007/s12518-013-0120-x
  • Ogleby, C. L., Papadaki, H., Robson, S., & Shortis, M. R. (1999). Comparative camera calibrations of some "off the shelf" digital cameras suited to archaeological purposes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXII-5/W11, 69-75.
  • Ortiz, J., Gil, M. L., Martínez, S., Rego, T., & Meijide, G. (2013). Three‐dimensional Modelling of Archaeological Sites Using Close‐range Automatic Correlation Photogrammetry and Low‐altitude Imagery. Archaeological Prospection, 20(3), 205-217. https://doi.org/10.1002/arp.1457
  • Pérez‐García, J. L., Mozas‐Calvache, A. T., Gómez‐López, J. M., & Jiménez‐Serrano, A. (2018). Three‐dimensional modelling of large archaeological sites using images obtained from masts. Application to Qubbet el‐Hawa site (Aswan, Egypt). Archaeological Prospection, 26(2), 121-135. https://doi.org/10.1002/arp.1728
  • Pérez‐García, J. L., Mozas‐Calvache, A. T., Barba-Colmenero, V., & Jiménez‐Serrano, A. (2019). Photogrammetric studies of inaccessible sites in archaeology: Case study of burial chambers in Qubbet el-Hawa (Aswan, Egypt). Journal of Archaeological Science, 102, 1-10. https://doi.org/10.1016/j.jas.2018.12.008
  • Perfetti, L., Polari, C., & Fassi, F. (2017). Fisheye Photogrammetry: Tests and Methodologies for the Survey of Narrow Spaces. International Archives of Photogrammetry and Remote Sensing, XLII-2/W3, 573-580. https://doi.org/10.5194/isprs-archives-XLII-2-W3-573-2017
  • Perfetti, L., & Fassi, F. (2022). Handheld fisheye multicamera system: surveying meandering architectonic spaces in open-loop mode - accuracy assessment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVI-2/W1-2022, 435-442. https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-435-2022
  • Remondino, F., Rizzi, A., Jimenez, B., Agugiaro, G., Baratti, G., & De Amicis, R. (2011). The Etruscans in 3D: From space to underground. Geoinformatics, 6, 283-290. https://doi.org/10.14311/gi.6.35
  • Rossi, C. (2001). Dimensions and slope in the nineteenth and twentieth dynasty royal tombs. The Journal of Egyptian Archaeology, 87(1), 73-80. https://doi.org/10.1177/030751330108700107
  • Sánchez-León, J. C., & Jiménez-Serrano, A. (2015). Sattjeni: Daughter, Wife and Mother of the Governors of Elephantine during the End of the Twelfth Dynasty. Zeitschrift für Ägyptische Sprache und Altertumskunde, 142(2), 154-166. https://doi.org/10.1515/zaes-2015-0013
  • Sánchez-León, J. C., & Jiménez-Serrano, A. (2016). Keeping provincial power in the lineage during the Twelfth Dynasty: The case of Khema, governor of Elephantine. Studien zur Altägyptischen Kultur, 307-314.
  • Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1-3), 7-42. https://doi.org/10.1109/SMBV.2001.988771
  • Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 519-528). New York, USA. https://doi.org/10.1109/CVPR.2006.19
  • Shaltout, M., & Belmonte, J. A. (2005). On the orientation of ancient Egyptian temples: (1) Upper Egypt and Lower Nubia. Journal for the History of Astronomy, 36(3), 273-298. https://doi.org/10.1177/002182860503600302
  • Szeliski, R. (2011). Computer Vision: Algorithms and Applications. London: Springer. https://doi.org/10.1007/978-1-84882-935-0
  • Ullman, S. (1979). The interpretation of structure from motion. Proceedings of the Royal Society of London B, 203, 405-426. https://doi.org/10.1098/rspb.1979.0006
  • Waldhäusl, P., & Ogleby, C. L. (1994). 3 x 3 rules for simple photogrammetric documentation of architecture. The International Archives of Photogrammetry and Remote Sensing, 30-5, 426-429.
  • Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
  • Zlot, R., & Bosse, M. (2014). Three-dimensional mobile mapping of caves. Journal of Cave & Karst Studies, 76(3), 191-206. https://doi.org/10.4311/2012EX0287