Analysing the Impact of Artificial Intelligence and Computational Sciences on Student PerformanceSystematic Review and Meta-analysis

  1. Inmaculada García Martínez 1
  2. José María Fernández Batanero 2
  3. José Fernández Cerero 2
  4. Samuel P. León 3
  1. 1 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  2. 2 Universidad de Sevilla
    info

    Universidad de Sevilla

    Sevilla, España

    ROR https://ror.org/03yxnpp24

  3. 3 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

Journal:
NAER: Journal of New Approaches in Educational Research

ISSN: 2254-7339

Year of publication: 2023

Volume: 12

Issue: 1

Pages: 171-197

Type: Article

DOI: 10.7821/NAER.2023.1.1240 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: NAER: Journal of New Approaches in Educational Research

Sustainable development goals

Abstract

Artificial intelligence (AI) and computational sciences have aroused a growing interest in education. Despite its relatively recent history, AI is increasingly being introduced into the classroom through different modalities, with the aim of improving student achievement. Thus, the purpose of the research is to analyse, quantitatively and qualitatively, the impact of AI components and computational sciences on student performance. For this purpose, a systematic review and meta-analysis have been carried out in WOS and Scopus databases. After applying the inclusion and exclusion criteria, the sample was set at 25 articles. The results support the positive impact that AI and computational sciences have on student performance, finding a rise in their attitude towards learning and their motivation, especially in the STEM (Science, Technology, Engineering, and Mathematics) areas. Despite the multiple benefits provided, the implementation of these technologies in instructional processes involves a great educational and ethical challenge for teachers in relation to their design and implementation, which requires further analysis from the educational research. These findings are consistent at all educational stages.

Bibliographic References

  • Anderson, J. & Barnett, M. (2011). Using video games to support pre-service elementary teachers learning of basic physics principles. Journal of Science Education and Technology, 20(4), 347–362. https://doi.org/10.1007/s10956-010-9257-0
  • Anderson J., L. & Barnett, M. (2013). Learning physics with digital game simulations in middle school science. Journal of Science Education and Technology, 22(6), 914–926. https://doi.org/10.1007/s10956-013-9438-8
  • Aromataris, E. & Munn, Z. (2020). Chapter 1: JBI Systematic Reviews. In JBI manual for evidence synthesis. Joanna Briggs Institute: Joanna Briggs Institute. Retrieved from https://doi.org/10.46658/JBIMES-20-02 https://doi.org/10.46658/JBIMES-20-02
  • Baker, T., Smith, L. & Anissa, N. (2019). Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges. Retrieved from https://media.nesta.org.uk/documents/Future_of_AI_and_education_v5_WEB.pdf
  • Barak, M. & Zadok, Y. (2009). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education, 19(3), 289–307. https://doi.org/10.1007/s10798-007-9043-3
  • Barbalios, N., Ioannidou, I., Tzionas, P. & Paraskeuopoulos, S. (2013). A model supported interactive virtual environment for natural resource sharing in environmental education. Computers & Education, 62, 231–248. https://doi.org/10.1016/j.compedu.2012.10.029
  • Baxter, G. & Hainey, T. (2019). Student perceptions of virtual reality use in higher education. Journal of Applied Research in Higher Education, 12(3), 413–424. https://doi.org/10.1108/jarhe-06-2018-0106
  • Beck, D. (2019). Augmented and Virtual Reality in Education: Immersive Learning Research. Journal of Educational Computing Research, 57(7), 1619–1625. https://doi.org/10.1177/0735633119854035
  • Bernardo, A. (2017). Virtual reality and simulation in neurosurgical training. World Neurosurgery, 106, 1015–1029. https://doi.org/10.1016/j.wneu.2017.06.140
  • Borenstein, M., Hedges, L. V., Higgins, J. & Rothstein, H. R. (2009). When does it make sense to perform a meta-analysis. Introduction to Meta-Analysis, 357–364. https://doi.org/10.1002/9780470743386.ch2
  • Bortnik, B., Stozhko, N., Pervukhina, I., Tchernysheva, A. & Belysheva, G. (1968). Effect of virtual analytical chemistry laboratory on enhancing student research skills and practices. Research in Learning Technology, 25, 1968. http://doi.org/10.25304/rlt.v25.1968
  • Bower, M., Dewitt, D. & Lai, J. W. (2020). Reasons associated with preservice teachers’ intention to use immersive virtual reality in education. British Journal of Educational Technology, 1–19. https://doi.org/10.1111/bjet.13009
  • Bozkurt, E. & Ilik, A. (2010). The effect of computer simulations over students’ beliefs on physics and physics success. Procedia-Social and Behavioral Sciences, 2(2), 4587–4591. https://doi.org/10.1016/j.sbspro.2010.03.735
  • Butt, S., Hannan, F. E., Rafiq, M., Hussain, I., Faisal, C. N. & Younas, W. (2020). Say-It & Learn: Interactive Application for Children with ADHD. In International Conference on Human-Computer Interaction. (pp. 213–223). Springer. https://doi.org/10.1007/978-3-030-49913-6_18
  • Cabero-Almenara, J. & Costas, J. (2016). Simulators use for students training. Prisma Social, 7, 343–372.
  • Castrillón, O., Sarache, & Herrera, . R. (2020). Predicción del rendimiento académico por medio de técnicas de inteligencia artificial. Formación Universitaria, 13(1), 93–102. http://doi.org/10.4067/S0718-50062020000100093
  • Chin, D. B., Dohmen, I. M., Cheng, B. H., Oppezzo, M. A., Chase, C. C. & Schwartz, D. L. (2010). Preparing students for future learning with teachable agents. Educational Technology Research and Development, 58(6), 649–669. https://doi.org/10.1007/s11423-010-9154-5
  • Civelek, T., Ucar, E., Ustunel, H. & Aydın, M. K. (2014). Effects of a haptic augmented simulation on K-12 students’ achievement and their attitudes towards physics. Science and Technology Education, 10(6), 565–574. https://doi.org/10.12973/eurasia.2014.1122a
  • Crompton, H., Bernacki, M. & Greene, J. A. (2020). Psychological foundations of emerging technologies for teaching and learning in higher education. Current Opinion in Psychology, 36, 101–105. https://doi.org/10.1016/j.copsyc.2020.04.011
  • Deng, R., Benckendorff, P. & Gannaway, D. (2019). Progress and new directions for teaching and learning in MOOCs. Computers & Education, 129, 48–60. https://doi.org/10.1016/j.compedu.2018.10.019
  • Dickerson, S. J. & Clark, R. M. (2018). A classroom-based simulation-centric approach to microelectronics education. Computer Applications in Engineering Education, 26(4), 768–781. https://doi.org/10.1002/cae.21918
  • Drigas, A. S. & Ioannidou, R. E. (2013). A review on artificial intelligence in special education. Communications in Computer and Information Science, 385–391. https://doi.org/10.1007/978-3-642-35879-1_46
  • Dunleavy, G., Nikolaou, C. K., Nifakos, S., Atun, R., Law, G. C. Y. & Car, L. T. (2019). Mobile digital education for health professions: systematic review and meta-analysis by the digital health education collaboration. Journal of Medical Internet Research, 21(2). https://doi.org/10.2196/12937
  • Elliot, L., Gehret, A., Valadez, M. S., Carpenter, R. & Bryant, L. (2020). Supporting Autonomous Learning Skills in Developmental Mathematics Courses with Asynchronous Online Resources. American Behavioral Scientist, 64(7), 1012–1030. https://doi.org/10.1177/0002764220919149
  • Fabregas, E., Farias, G., Dormido-Canto, S., Guinaldo, M., Sánchez, J. & Bencomo, S. D. (2016). Platform for teaching mobile robotics. Journal of Intelligent & Robotic Systems, 81(1), 131–143. https://doi.org/10.1007/s10846-015-0229-8
  • Fang, N. & Guo, Y. (2016). Interactive computer simulation and animation for improving student learning of particle kinetics. Journal of Computer Assisted Learning, 32(5), 443–455. https://doi.org/10.1111/jcal.12145
  • Fidan, M. & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Computers & Education, 142, 103635. https://doi.org/10.1016/j.compedu.2019.103635
  • Flores-Vivar, J. M. & García-Peñalvo, F. J. (2023). Reflexiones sobre la ética, potencialidades y retos de la Inteligencia Artificial en el marco de la Educación de Calidad (ODS4) Comunicar, 31(74). https://doi.org/10.3916/C74-2023-03
  • Gao, P., Li, J. & Liu, S. (2021). An Introduction to Key Technology in Artificial Intelligence and big Data Driven e-Learning and e-Education. Mobile Networks and Applications, 26(5), 2123–2126. https://doi.org/10.1007/s11036-021-01777-7
  • Guilherme, A. (2017). AI and education: the importance of teacher and student relations. AI & Society, 34(1), 47–54. https://doi.org/10.1007/s00146-017-0693-8
  • Halili, S. H. (2019). Technological advancements in education 4.0. The Online Journal of Distance Education and E-Learning, 7, 63–69.
  • Han, J., Zhao, W., Jiang, Q., Oubibi, M. & Hu, X. (2019). Intelligent Tutoring System Trends 2006-2018: A Literature Review. In 2019 Eighth International Conference on Educational Innovation through Technology (EITT). (pp. 153–159) IEEE. https://doi.org/10.1109/eitt.2019.00037
  • Harrison, N. (1986). Patterns of participation in higher education for care-experienced students in England: why has there not been more progress? Studies in Higher Education, 45(9), 1986–2000. https://doi.org/10.1080/03075079.2019.1582014
  • Hooshyar, D., Yousefi, M. & Lim, H. (2019). A systematic review of data-driven approaches in player modeling of educational games. Artificial Intelligence Review, 52(3), 1997–2017. https://doi.org/10.1007/s10462-017-9609-8
  • Hoplock, L. B., Lobchuk, M. M. & Lemoine, J. (2020). Perceptions of an evidence-based empathy mobile app in post-secondary education. Education and Information Technologies, 26, 1273–1292. https://doi.org/10.1007/s10639-020-10311-3
  • Ibáñez, M. B., Serio, Á. D., Villarán, D. & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1–13. https://doi.org/10.1016/j.compedu.2013.09.004
  • Jawaid, I., Javed, M. Y., Jaffery, M. H., Akram, A., Safder, U. & Hassan, S. (2020). Robotic system education for young children by collaborative-project-based learning. Computer Applications in Engineering Education, 28(1), 178–192. https://doi.org/10.1002/cae.22184
  • Jee, C. (2019). Best chatbot building platforms. Techworld. Retrieved from https://bit.ly/2Ate94F
  • Jiménez, E., Bravo, E. & Bacca, E. (2010). Tool for experimenting with concepts of mobile robotics as applied to children´s education. IEEE Transactions on Education, 53(1), 88–95. https://doi.org/10.1109/TE.2009.2024689
  • Jiménez-Hernández, E. M., Oktaba, H., Díaz-Barriga, F. & Piattini, M. (2020). Using web-based gamified software to learn Boolean algebra simplification in a blended learning setting. Computer Applications in Engineering Education, 28(6), 1591–1611. https://doi.org/10.1002/cae.22335
  • Kavanagh, S., Luxton-Reilly, A., Wuensche, B. & Plimmer, B. (2017). A systematic review of Virtual Reality in education. Themes in Science and Technology Education, 10(2), 85–119.
  • Lau, K. W. & Lee, P. Y. (2015). The use of virtual reality for creating unusual environmental stimulation to motivate students to explore creative ideas. Interactive Learning Environments, 23(1), 3–18. https://doi.org/10.1080/10494820.2012.745426
  • Law, G. C., Dutt, A. & Neihart, M. (2019). Increasing intervention fidelity among special education teachers for autism intervention: A pilot study of utilizing a mobile-app-enabled training program. Research in Autism Spectrum Disorders, 67, 101411. https://doi.org/10.1016/j.rasd.2019.101411
  • López-Rodríguez, M. I. & Barac, M. (2019). Valoración del alumnado sobre el uso de Clickers y vídeo tutoriales en educación superior. Research in Education and Learning Innovation Archives, 22, 29–44. Retrieved from https://doi.org/10.7203/realia.22.14582 https://doi.org/10.7203/realia.22.14582
  • Madathil, K. C., Frady, K., Hartley, R., Bertrand, J., Alfred, M. & Gramopadhye, A. (2017). An empirical study investigating the effectiveness of integrating virtual reality-based case studies into an online asynchronous learning environment. Computers in Education Journal, 8(3), 1–10.
  • Martínez, D. L., Karanik, M., Giovannini, M. & Pinto, N. (2015). Perfiles de Rendimiento Académico: Un Modelo basado en Minería de datos. Campus Virtuales, 4(1), 12–30.
  • Masson, R. & Rennie, F. (2006). ELearning. The key concepts. Routledge
  • McCormick, K. I. & Hall, J. A. (2022). Computational thinking learning experiences, outcomes, and research in preschool settings: a scoping review of literature. Education and Information Technologies, 27, 1–36. https://doi.org/10.1007/s10639-021-10765-z
  • Merino-Armero, J. M., González-Calero, J. A. & Cozar-Gutierrez, R. (2022). Computational thinking in K-12 education. An insight through meta-analysis. Journal of Research on Technology in Education, 54(3), 410–437. https://doi.org/10.1080/15391523.2020.1870250
  • Moreno, R. D. (2019). The arrival of artificial intelligence to education. RITI Journal, 7(14), 260–270. https://doi.org/10.36825/RITI.07.14.022
  • Morris, S. B. (2008). Estimating effect sizes from pretest-posttest-control group designs. Organizational Research Methods, 11, 364–386. https://doi.org/10.1177/1094428106291059
  • Neri, L., Noguez, J., Robledo-Rella, V., Escobar-Castillejos, D. & Gonzalez-Nucamendi, A. (2018). Teaching of Classical Mechanics Concepts using Visuo-haptic Simulators. Educational Technology & Society, 21(2), 85–97.
  • Ocaña, Y., Valenzuela, L. & Garro, L. (2019). Artificial Intelligence and its Implications in Higher Education. Propósito y Representaciones, 7(2), 536–568. http://doi.org/10.20511/pyr2019.v7n2.274
  • Olde, G.-C.-V.-D., Jong, T. D. & Gijlers, H. (2013). Learning by Designing Instruction in the Context of Simulation-based Inquiry Learning. Educational Technology & Society, 16(4), 47–58.
  • Page, M. J., Mckenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D. & Moher, D. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016
  • Pareto, L. (2014). A teachable agent game engaging primary school children to learn arithmetic concepts and reasoning. International Journal of Artificial Intelligence in Education, 24(3), 251–283. https://doi.org/10.1007/s40593-014-0018-8
  • Păsărelu, C. R., Andersson, G. & Dobrean, A. (2020). Attention-deficit/hyperactivity disorder mobile apps: A systematic review. International Journal of Medical Informatics, 138. https://doi.org/10.1016/j.ijmedinf.2020.104133
  • Pellas, N. & Vosinakis, S. (2018). The effect of simulation games on learning computer programming: A comparative study on high school students’ learning performance by assessing computational problem-solving strategies. Education and Information Technologies, 23(3), 2423–2452. https://doi.org/10.1007/s10639-018-9724-4
  • Petko, D., Schmid, R., Müller, L. & Hielscher, M. (2019). Metapholio: A mobile app for supporting collaborative note taking and reflection in teacher education. Technology, Knowledge and Learning, 24(4), 699–710. https://doi.org/10.1007/s10758-019-09398-6
  • Popenici, S. A. D. & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Technology Enhanced Learning, 12(1). ). https://doi.org/10.1186/s41039-017-0062-8
  • Pyörälä, E., Mäenpää, S., Heinonen, L., Folger, D., Masalin, T. & Hervonen, H. (2019). The art of note taking with mobile devices in medical education. BMC medical education, 19(1), 96. https://doi.org/10.1186/s12909-019-1529-7
  • Reister, M. & Blanchard, S. B. (2020). Tips and Tools for Implementing Progress Monitoring. Kappa Delta Pi Record, 56(3), 128–134. https://doi.org/10.1080/00228958.2020.1770006
  • Riess, W. & Mischo, C. (2010). Promoting systems thinking through biology lessons. International Journal of Science Education, 32(6), 705–725. https://doi.org/10.1080/09500690902769946
  • Roll, I. & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26(2), 582–599. https://doi.org/10.1007/s40593-016-0110-3
  • Schachner, T., Keller, R. & Wangenheim, F. V. (2020). Artificial intelligence-based conversational agents for chronic conditions: systematic literature review. Journal of Medical Internet Research, 22(9). https://doi.org/10.2196/20701
  • Shegog, R., Lazarus, M. M., Murray, N. G., Diamond, P. M., Sessions, N. & Zsigmond, E. (2012). Virtual transgenics: Using a molecular biology simulation to impact student academic achievement and attitudes. Research in Science Education, 42(5), 875–890. https://doi.org/10.1007/s11165-011-9216-7
  • Singer-Brodowski, M., Brock, A., Etzkorn, N. & Otte, I. (2019). Monitoring of education for sustainable development in Germany-insights from early childhood education, school and higher education. Environmental Education Research, 25(4), 492–507. . https://doi.org/10.1080/13504622.2018.1440380
  • Song, P. & Wang, X. (2020). A bibliometric analysis of worldwide educational artificial intelligence research development in recent twenty years. Asia Pacific Education Review, 21(3), 473–486. https://doi.org/10.1007/s12564-020-09640-2
  • Stieff, M. (2011). Improving representational competence using molecular simulations embedded in inquiry activities. Journal of Research in Science Teaching, 48(10), 1137–1158. https://doi.org/10.1002/tea.20438
  • Sun, L., Guo, Z. & Hu, L. (2021). Educational games promote the development of students’ computational thinking: a meta-analytic review. Interactive Learning Environments, 1–15. https://doi.org/10.1080/10494820.2021.1931891
  • Tatli, Z. & Ayas, A. (2013). Effect of a Virtual Chemistry Laboratory on Students' Achievement. Educational Technology & Society, 16(1), 159–170.
  • Tondeur, J., Roblin, N. P., Van Braak, J., Voogt, J. & Prestridge, S. (2017). Preparing beginning teachers for technology integration in education: Ready for take-off? Technology, Pedagogy and Education, 26(2), 157–177. https://doi.org/10.1080/1475939X.2016.1193556
  • UNESCO. (2019). The Sustainable Development Goals Report. Retrieved from https://bit.ly/34nbq60
  • UNESCO. (2021). International Forum on AI and the futures of education developing competencies for the AI era. Retrieved from https://bit.ly/3zoB6AS
  • Veredas, F. J., Ruiz-Bandera, E., Villa-Estrada, F., Rufino-González, J. F. & Morente, L. (2014). A web-based e-learning application for wound diagnosis and treatment. Computer Methods and Programs in Biomedicine, 116(3), 236–248. https://doi.org/10.1016/j.cmpb.2014.06.005
  • Vesisenaho, M., Juntunen, M., Häkkinen, P., Pöysä-Tarhonen, J., Fagerlund, J., Miakush, I. & Parviainen, T. (2019). Virtual Reality in Education: Focus on the Role of Emotions and Physiological Reactivity. Journal of Virtual Worlds Research, 12(1). https://doi.org/10.4101/jvwr.v12i1.7329
  • Viechtbauer, W. (2010). Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software, 36(3), 1–48. https://doi.org/10.18637/jss.v036.i03
  • Vilkova, K. & Shcheglova, I. (2020). Deconstructing self-regulated learning in MOOCs: In search of help-seeking mechanisms. Education and Information Technologies, 26, 17–33. https://doi.org/10.1007/s10639-020-10244-x
  • Vlachopoulos, D. & Makri, A. (2017). The effect of games and simulations on higher education: a systematic literature review. International Journal of Educational Technology in Higher Education, 14(1), 22. https://doi.org/10.1186/s41239-017-0062-1
  • Walker, E., Rummel, N. & Koedinger, K. R. (2014). Adaptive intelligent support to improve peer tutoring in algebra. International Journal of Artificial Intelligence in Education, 24(1), 33–61. https://doi.org/10.1007/s40593-013-0001-9
  • Wilkie, B. & Liefeith, A. (2020). Student experiences of live synchronised video feedback in formative assessment. Teaching in Higher Education, 27(3), 403–416. https://doi.org/10.1080/13562517.2020.1725879
  • Wirjawan, J. V. D., Pratama, D., Pratidhina, E., Wijaya, A., Untung, B. & Herwinarso, (2020). Development of Smartphone App as Media to Learn Impulse-Momentum Topics for High School Students. International Journal of Instruction, 13(3), 17–30. https://doi.org/10.29333/iji.2020.1332a
  • Yang, Y., Zhuang, Y. & Pan, Y. (2021). Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies. Frontiers of Information Technology & Electronic Engineering, 22(12), 1551–1558. https://doi.org/10.1631/FITEE.2100463
  • Yelamarthi, K. & Drake, E. (2014). A flipped first-year digital circuits course for engineering and technology students. IEEE Transactions on Education, 58(3), 179–186. https://doi.org/10.1109/TE.2014.2356174
  • Zacharia, Z. C. & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21(3), 317–331. https://doi.org/10.1016/j.learninstruc.2010.03.001
  • Zawacki-Richter, O., Marín, V. I., Bond, M. & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education-where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0
  • Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., ... Y. (2010). A Review of Artificial Intelligence (AI) in Education from. Complexity, 8812542. https://doi.org/10.1155/2021/8812542