Predicción automática de la carga frutal de olivos empleando UAV y redes convolucionales
- Asensio Jiménez, Pablo 1
- Martínez Gila, Diego Manuel 1
- Satorres Martínez, Silvia 1
- Estévez, Elisabet 1
- Gómez Ortega, Juan 1
- Gámez García, Javier 1
-
1
Universidad de Jaén
info
- Carlos Balaguer Bernaldo de Quirós (coord.)
- José Manuel Andújar Márquez (coord.)
- Ramon Costa Castelló (coord.)
- Carlos Ocampo Martínez (coord.)
- Jesús Fernández Lozano (coord.)
- Matilde Santos Peñas (coord.)
- José Enrique Simó Ten (coord.)
- Montserrat Gil Martínez (coord.)
- Jose Luis Calvo Rolle (coord.)
- Raúl Marín Prades (coord.)
- Eduardo Rocón de Lima (coord.)
- Elisabet Estévez Estévez (coord.)
- Pedro Jesús Cabrera Santana (coord.)
- David Muñoz de la Peña Sequedo (coord.)
- José Luis Guzmán Sánchez (coord.)
- José Luis Pitarch Pérez (coord.)
- Oscar Reinoso García (coord.)
- Oscar Déniz Suárez (coord.)
- Emilio Jiménez Macías (coord.)
- Vanesa Loureiro Vázquez (coord.)
Editorial: Servizo de Publicacións ; Universidade da Coruña
ISBN: 978-84-9749-841-8
Año de publicación: 2022
Páginas: 956-963
Congreso: Jornadas de Automática (43. 2022. Logroño)
Tipo: Aportación congreso
Resumen
El sector del aceite de oliva y de la aceituna de mesa representan ya el 3% del PIB total de Andalucía. Teniendo en cuenta las cifras que este hecho supone, predecir la cosecha campaña tras campaña es clave para definir estrategias de marketing. Dada la gran superficie de olivar existente resulta interesante la integración de tecnologías emergentes que puedan facilitar esta tarea de predicción. En este trabajo se estudia la viabilidad del uso de cámaras de visión por computador de espectro visible embarcadas en UAVs para valorar de forma cualitativa la carga frutal de los olivos de una plantación. Las imágenes adquiridas fueron etiquetadas y posteriormente utilizadas para entrenar tres arquitecturas CNN (AlexNet, GoogLeNet, y ResNet) por el método de transferencia de aprendizaje. La arquitectura que mejor rindió fue GoogLeNet, que posteriormente fue optimizada obteniendo finalmente una tasa de éxito del 90% a la hora de clasificar imágenes que mostraban regiones de olivos con carga alta, media, baja y descarte (no olivo).