Control PI neuro-adaptable en tiempo real de la humedad en el suelo usando un modelo híbrido

  1. Gomez, Juan 1
  2. Rossomando, Francisco
  3. Capraro, Flavio
  4. Soria, Carlos
  1. 1 Universidad Nacional de San Juan
    info

    Universidad Nacional de San Juan

    Ciudad de San Juan, Argentina

    ROR https://ror.org/02rsnav77

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2023

Volumen: 20

Número: 1

Páginas: 93-103

Tipo: Artículo

DOI: 10.4995/RIAI.2022.17106 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

En la agricultura que se desarrolla en los valles cordilleranos de Argentina, el uso eficiente del agua destinada para el riego es fundamental para el desarrollo y sustentabilidad de los emprendimientos agrícolas. A fin de abordar este desafío, se propone lograr un modelo híbrido que permita representar con la mayor fidelidad posible la dinámica del contenido de agua en un suelo bajo riego por goteo, incluyendo la extracción de agua por parte de un cultivo. Para esto, se cuenta con la formulación de un  modelo matemático del proceso basado en la ecuación general de flujo, la cual ha sido resuelta mediante diferencias finitas. Se incorpora a esta estructura una red neuronal de base radial (RBF) para compensar de manera off-line la salida del modelo en un punto del suelo, identificando el error de salida. Además, este estudio incorpora el diseño de un controlador de riego de tipo adaptable para dinámicas desconocidas. El diseño está basado en superficies deslizantes en combinación PI y redes neuronales, siendo el objetivo de control mantener el contenido de agua en el suelo a determinado valor de referencia establecido.

Referencias bibliográficas

  • Albertos, P., Mareels, I., 01 2010. Feedback and Control for Everyone. DOI: 10.1007/978-3-642-03446-6 https://doi.org/10.1007/978-3-642-03446-6
  • Allen, R. G., Pereira, L. S., Raes, D., Smith, M., 2006. Evapotranspiración del cultivo: guías para la determinaci'ón de los requerimientos de agua de los cultivos. FAO Roma, Italia, 298.
  • Arbat, G., Puig, J., Poch, R., Ramírez de Cartagena, F., Barragán, J., 2003. Evaluation of numerical models of water flow in soil hydrus-2d and simdas under localized irrigation.
  • Arbat, G., Puig-Bargués, J., Duran-Ros, M., Barragan, J., Cartagena, F., 10 2013. Drip-irriwater: Computer software to simulate soil wetting patterns under surface drip irrigation. Computers and Electronics in Agriculture 98, 183. DOI: 10.1016/j.compag.2013.08.009
  • https://doi.org/10.1016/j.compag.2013.08.009
  • Armstrong, C., Wilson, T., 1983. Computer model for moisture distribution in stratified soils under a trickle source. Transactions - American Society of Agricultural Engineers 26 (6), 1704-1709, cited By 12. https://doi.org/10.13031/2013.33829
  • Bianchini, M., Frasconi, P., Gori, M., 1995. Learning without local minima in radial basis function networks. IEEE Transactions on Neural Networks 6 (3), 749-756. DOI: 10.1109/72.377979 https://doi.org/10.1109/72.377979
  • Capraro, F., Pati˜no, D., Tosetti, S., Schugurensky, C., April 2008. Neural network-based irrigation control for precision agriculture. In: 2008 IEEE International Conference on Networking, Sensing and Control. pp. 357-362. https://doi.org/10.1109/ICNSC.2008.4525240
  • Capraro, F., Tosetti, S., Vita Serman, F., 2011. Real-time soil moisture control for very high frequency drip irrigation in olive groves. Acta horticulturae (888), 239. https://doi.org/10.17660/ActaHortic.2011.888.27
  • Choudhary, S., Gaurav, V., Singh, A., Agarwal, S., 2019. Autonomous crop irrigation system using artificial intelligence. International Journal of Engineering and Advanced Technology 8 (5 Special Issue), 46-51, cited By 0.
  • Edwards, C., Spurgeon, S., 1998. Sliding Mode Control: Theory And Applications. Series in Systems and Control. Taylor & Francis. https://doi.org/10.1201/9781498701822
  • Elnesr, M., Alazba, P., 10 2017. Simulation of water distribution under surface dripper using artificial neural networks. Computers and Electronics in Agriculture 143, 90-99. https://doi.org/10.1016/j.compag.2017.10.003
  • FAO, 2016. Aquastat base de datos. Organizaci'on de las Naciones Unidas para la Alimentación y la Agricultura.
  • Feddes, R., Hoff, H., Bruen, M., Dawson, T., De Rosnay, P., Dirmeyer, P., Jackson, R., Kabat, P., Kleidon, A., Lilly, A., Pitman, A., Dec. 2001. Modeling root water uptake in hydrological and climate models. Bulletin - American Meteorological Society 82 (12), 2797-2809. https://doi.org/10.1175/1520-0477(2001)082<2797:MRWUIH>2.3.CO;2
  • Girosi, F., Poggio, T., 1990. Networks and the best approximation property. Biological Cybernetics 63, 169-176. https://doi.org/10.1007/BF00195855
  • Haykin, S., 1999. Neural Networks: A Comprehensive Foundation. International edition. Prentice Hall.
  • Hung, L.-C., Chung, H.-Y., 2007. Decoupled control using neural networkbased sliding-mode controller for nonlinear systems. Expert Syst. Appl. 32, 1168-1182. https://doi.org/10.1016/j.eswa.2006.02.024
  • Khatri, K. C., 1984. Simulation of soil moisture migration from a point source. Ph.D. thesis.
  • Knox, J., Kay, M., Weatherhead, E., 2012. Water regulation, crop production, and agricultural water management understanding farmer perspectives on irrigation efficiency. Agricultural Water Management 108, 3-8, irrigation efficiency and productivity: scales, systems and science. https://doi.org/10.1016/j.agwat.2011.06.007
  • Liao, Y., Fang, S.-C., Nuttle, H., 10 2003. Relaxed conditions for radial-basis function networks to be universal approximators. Neural networks : the official journal of the International Neural Network Society 16, 1019-28. DOI: 10.1016/S0893-6080(02)00227-7 https://doi.org/10.1016/S0893-6080(02)00227-7
  • Lozoya, C., Mendoza, C., Mejía, L., Quintana, J., Mendoza, G., Bustillos, M., Arras, O., Solís, L., 2014. Model predictive control for closed-loop irrigation. IFAC Proceedings Volumes 47 (3), 4429 - 4434, 19th IFAC World Congress. https://doi.org/10.3182/20140824-6-ZA-1003.02067
  • Park, J., Sandberg, I. W., mar 1993. Approximation and radial-basis-function networks. Neural Comput. 5 (2), 305-316. https://doi.org/10.1162/neco.1993.5.2.305
  • Prado Hernández, J., Rivas, M., Lezama, A., Carrillo, M., Peña, V. M., Valenzuela, H., Paz, O., 10 2017. Modelo empírico del patrón de humedad en un suelo orgánico de méxico con riego por goteo superficial.
  • Pujolràs, G. A., 2006. Desarrollo y validación de un modelo de simulación de la dinámica del agua en el suelo. aplicación al diseño agronómico y al manejo en riego localizado. Ph.D. thesis.
  • Ramirez de Cartagena Bisbe, F., Sáinz Sánchez, M. A., 1997. Modelo de distribución de agua en suelo regado por goteo. Ingeniería del agua 4 (1). https://doi.org/10.4995/ia.1997.2716
  • Rossomando, F., Soria, C., Carelli, R., 08 2012. Neural network-based com-pensation control of mobile robots with partially known structure. ControlTheory Applications, IET 6, 1851-1860.DOI:10.1049/iet-cta.2011.0581 https://doi.org/10.1049/iet-cta.2011.0581
  • Rossomando, F., Soria, C., Carelli, R., 06 2014. Sliding mode neuro adaptivecontrol in trajectory tracking for mobile robots. Journal of Intelligent Ro-botic Systems 74. https://doi.org/10.1007/s10846-013-9843-5
  • Sahbani, F., Ferjani, E., 06 2018. Identification and modelling of drop by drop irrigation system for tomato plants under greenhouse conditions. Irrigation and Drainage 67. https://doi.org/10.1002/ird.2253
  • Simunek, J., Sejna, M., Van Genuchten, M., 2018. New features of version 3 of the hydrus (2d/3d) computer software package. Journal of Hydrology and Hydromechanics 66 (2), 133-142, cited By 4. https://doi.org/10.1515/johh-2017-0050
  • Slotine, J., Slotine, J., Li, W., 1991. Applied Nonlinear Control. Prentice Hall.
  • Smith, R. J., Baillie, J. N., McCarthy, A. C., Raine, S. R., Baillie, C. P., 2010. Review of precision irrigation technologies and their application. Tech. rep.
  • Utkin, V. I., 1992. Sliding modes in optimization and control problems. Van der Ploeg, R., Benecke, P., 1974. Unsteady, unsaturated, n-dimensional moisture flow in soil: A computer simulation program. Proc Soil Sci Soc Am 38 (6), 881-885, cited By 21. https://doi.org/10.2136/sssaj1974.03615995003800060016x
  • Van der Ploeg, R., Benecke, P., 1974. Unsteady, unsaturated, n-dimensionalmoisture flow in soil: A computer simulation program. Proc Soil Sci SocAm 38 (6), 881-885, cited By 21. https://doi.org/10.2136/sssaj1974.03615995003800060016x
  • Van Yee, P., Haykin, S., 2001 - 2001. Regularized radial basis function networks : theory and applications / Paul Van Yee, Simon Haykin. Adaptive and learning systems for signal processing, communications, and control. John Wiley, New York.
  • Vita Serman, F., Capraro, F., Tosetti, S., Cornejo, V., Carelli, A., Ceci, L., 05 2012. Intelligent irrigation control in olive groves (olea europaea l.): A novel approach for water resource optimization. Acta Horticulturae 949. DOI: 10.17660/ActaHortic.2012.949.50 https://doi.org/10.17660/ActaHortic.2012.949.50
  • Vrugt, J., Hopmans, J., Simunek, Jiri, J., 07 2001. Calibration of a twodimensional root water uptake model. Fluid Phase Equilibria 65, 1027- 1037. DOI: 10.2136/sssaj2001.6541027x https://doi.org/10.2136/sssaj2001.6541027x
  • Wray, J., Green, G. G., 1995. Neural networks, approximation theory, and finite precision computation. Neural Networks 8 (1), 31-37. https://doi.org/10.1016/0893-6080(94)00056-R
  • Yahyaoui, I., Tadeo, F., Segatto, M. V., 2017. Energy and water management for drip-irrigation of tomatoes in a semi-arid district. AgriculturalWater Management 183, 4 - 15, special Issue: Advances on ICTs for Water Management in Agriculture. https://doi.org/10.1016/j.agwat.2016.08.003