Sintering of sepiolite-rich by-products for the manufacture of lightweight aggregatestechnological properties, thermal behavior and mineralogical changes
- J. M. Moreno-Maroto
- B. González-Corrochano
- J. Alonso-Azcárate
- C. Martínez-García
ISSN: 0465-2746
Year of publication: 2021
Volume: 71
Issue: 341
Type: Article
More publications in: Materiales de construcción
Abstract
A sepiolite mining by-product (SEP) has been studied as major component for lightweight aggregate (LWA) manufacture. Pellet bursting during firing was avoided by the addition of 2.5 wt% of thermoplastic waste (P) and 2.5 wt% P + 2.5 wt% carbon fiber residue (FC) in powder form. The mixtures were pelletized and then sintered at 1225º˚C for 4 minutes in a rotary kiln. Highly porous white LWAs with good mechanical strength were produced. A mineralogical study revealed the formation of amorphous phase ( > 50%) and minor proportions of enstatite, protoenstatite and diopside. Quartz was the only inherited mineral, appearing in the form of isolated phenocrysts within a general porphyritic texture. The result of this study suggests the promising use of sepiolite (whether or not in residue form) for the manufacture of high quality LWAs.
Funding information
Funders
-
Junta de Comunidades de Castilla-La Mancha
- PEII-2014-025-P
-
European Social Fund
- 2014/10620
-
European Social Fund
- 2016/12998
Bibliographic References
- Goktas, A.A.; Misirli, Z.; Baykara, T. (1997) Sintering behaviour of sepiolite. Ceram. Int. 23, 305-311. https://doi.org/10.1016/S0272-8842(96)00023-5
- Zhang, Y.; Wang, L.; Wang, F.; Liang, J.; Ran, S.; Sun, J. (2017) Phase transformation and morphology evolution of sepiolite fibers during thermal treatment. Appl. Clay Sci. 143, 205-211. https://doi.org/10.1016/j.clay.2017.03.042
- Pascual, C.; Criado, E.; Recio, P.; Martínez, R.; De Aza, A.H.; Valle, F.J.; Mañueco, C. (2011) La porcelana de sepiolita de Bartolomé Sureda (1802-1808). Investigación arqueométrica sobre la Real Fábrica de Buen Retiro. Bol. Soc. Esp. Ceram. Vidrio. 50 [6], 311-328. https://doi.org/10.3989/cyv.402011
- Ran, S-s.; Wang. L-j.; Zhang, Y-d.; Liang, J-s. (2016) Reinforcement of bone china by the addition of sepiolite nano-fibers. Ceram. Int. 42, 13485-13490. https://doi.org/10.1016/j.ceramint.2016.05.140
- Li, J.; Liang, J.; Wang, F.; Wang, L. (2015) Effect of sepiolite fibers addition on sintering behavior of sanitary bodies. Appl. Clay Sci. 105-106, 231-235. https://doi.org/10.1016/j.clay.2014.10.017
- Noda, H.; Miyagawa, K.; Kobayashi, M.; Horiguchi, H.; Ozawa, K.; Kumada, N.; Yonesaki, Y.; Takei, T.; Kinomura, N. (2009) Preparation of cordierite from fibrous sepiolite. J. Ceram. Soc. Jpn. 117 [1371] 1236-1239. https://doi.org/10.2109/jcersj2.117.1236
- Zhou, J-e.; Dong, Y.; Hampshire, S.; Meng, G. (2011) Utilization of sepiolite in the synthesis of porous cordierite ceramics. Appl. Clay Sci. 52 [3], 328-332. https://doi.org/10.1016/j.clay.2011.02.001
- Suárez, S.; Coronado, J.M.; Portela, R.; Martín, J.C; Yates, M.; Avila, P.; Sánchez B. (2008) On the preparation of TiO2-sepiolite hybrid materials for the photocatalytic degradation of TCE: influence of TiO2 distribution in the mineralization. Environ. Sci. Technol. 42 [16], 5892-5896. https://doi.org/10.1021/es703257w PMid:18767641
- Moreno-Maroto, J.M.; González-Corrochano, B.; Alonso-Azcárate, J.; Rodríguez, L.; Acosta, A. (2017) Development of lightweight aggregates from stone cutting sludge, plastic wastes and sepiolite rejections for agricultural and environmental purposes. J. Environ. Manage. 200, 229-242. https://doi.org/10.1016/j.jenvman.2017.05.085 PMid:28582746
- Moreno-Maroto, J.M; González-Corrochano, B.; Alonso- Azcárate, J.; Rodríguez, L.; Acosta, A. (2017) Manufacturing of lightweight aggregates with carbon fiber and mineral wastes. Cem. Concr. Compos. 83, 335-348. https://doi.org/10.1016/j.cemconcomp.2017.08.001
- Moreno-Maroto, J.M.; González-Corrochano, B.; Alonso-Azcárate, J.; Martínez García, C. (2019) A study on the valorization of a metallic ore mining tailing and its combination with polymeric wastes for lightweight aggregates production. J. Cleaner Prod. 212, 997-1007. https://doi.org/10.1016/j.jclepro.2018.12.057
- Murray, H.H.; Pozo, M.; Galán, E. (2011) An introduction to palygorskite and sepiolite deposits-location, geology and uses. In: Galán, E., Singer, A. (Eds.), Developments in Palygorskite-Sepiolite Research. A New Outlook on These Nanomaterials. Developments in Clay Science. 3, 85-99. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-53607-5.00004-9
- Estadística Minera de España (2016) Gobierno de España. Ministerio de Energía, Turismo y Agenda Digital. Secretaría de Estado. Dirección General de Política Energética y Minas. (Mining Statistics of Spain in 2016, Spanish Government).
- BGS (2018) World Mineral Production 2012-2016. Brithish Geological Survey, Natural Evironmental Research Council. ISBN:978-0-85272-882-6 (website version).
- European Commission (2014) Commission Decision 2014/955/EU of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council Text with EEA relevance. Official Journal of the European Union, 30/12/2014.
- Yasuda, Y. (1991) Sewage-sludge utilization in Tokyo. Water Sci. Technol. 23 [10-12], 1743-1752. https://doi.org/10.2166/wst.1991.0629
- De Santiago Buey, C.; Raya García, M. (2008) Análisis del peso específico y porosidad de materiales porosos mediante picnometría de helio. Ing. Civil. 151, 95-103. ISSN 0213-8468.
- Buurman, P.; Pape, Th.; Reijneveld, J. A.; de Jong, F.; van Gelder, E. (2001) Laser-diffraction and pipette-method grain sizing of Dutch sediments: correlations for fine fractions of marine, fluvial, and loess samples. Neth. J. Geosci. 80 [2], 49-57. https://doi.org/10.1017/S0016774600022319
- Eshel, G.; Levy, G.J.; Mingelgrin, U.; Singer, M.J. (2004) Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 68 [3], 736-743. https://doi.org/10.2136/sssaj2004.7360
- Ferro, V.; Mirabile, S. (2009) Comparing particle size distribution analysis by sedimentation and laser diffraction method. J. Ag. Eng. - Riv. Ing. Agr. 2, 35-43. https://doi.org/10.4081/jae.2009.2.35
- EN-933-9 (1999) Tests for geometrical properties of aggregates. Part 9: Assessment of fines. Methylene blue test. European Committee for Standardization.
- Santamarina, J.C.; Klein, K.A.; Wang, Y.H.; Prencke, E. (2002) Specific surface: determination and relevance. Can. Geotech. J. 39 [1], 233-241. https://doi.org/10.1139/t01-077
- Ingamells, C.O. (1970) Lithium metaborate flux in silicate analysis. Anal. Chim. Acta. 52, 323-334. https://doi.org/10.1016/S0003-2670(01)80963-6
- Riley, C.M. (1951) Relation of chemical properties to the bloating of clays. J. Am. Ceram. Soc. 34 [4], 121-128. https://doi.org/10.1111/j.1151-2916.1951.tb11619.x
- Fakhfakh, E.; Hajjaji, W.; Medhioub, M.; Rocha, F.; López- Galindo, A.; Setti, M.; Kooli, F.; Zargouni, F.; Jamoussi, F. (2007) Effects of sand addition on production of lightweight aggregates from Tunisian smectite-rich clayey rocks. Appl. Clay Sci. 35 [3-4], 228-237. https://doi.org/10.1016/j.clay.2006.09.006
- UNE 103-103-94 (1994) Determinación del límite líquido de un suelo por el método del aparato de Casagrande. Asociación Española de Normalización y Certificación AENOR Norma española.
- Moreno-Maroto, J.M.; Alonso-Azcárate, J. (2015) An accurate, quick and simple method to determine the plastic limit and consistency changes in all types of clay and soil: The thread bending test. Appl. Clay Sci. 114, 497-508. https://doi.org/10.1016/j.clay.2015.06.037
- Moreno-Maroto, J.M.; Alonso-Azcárate, J. (2016) A bending test for determining the atterberg plastic limit in soils. J. Vis. Exp. 112, e54118. https://doi.org/10.3791/54118 PMid:27404389 PMCid:PMC4993308
- Moreno-Maroto, J.M.; Alonso-Azcárate, J. (2017) Plastic limit and other consistency parameters by a bending method and interpretation of plasticity classification in soils. Geotech. Test. J. 40 [3], 467-482. https://doi.org/10.1520/GTJ20160059
- ASTM D 4318-10e1 (2014) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
- Moreno-Maroto, J.M.; Alonso-Azcárate, J. (2018) What is clay? A new definition of "clay" based on plasticity and its impact on the most widespread soil classification systems. Appl. Clay Sci. 161, 57-63. https://doi.org/10.1016/j.clay.2018.04.011
- Gippini, E. (1969) Contribution à l'étude des proprietés de molage des argiles et des mélanges optimaux de matières premières. L'Indus. Céram. 619, 423-435.
- EN-1097-3 (1998) Tests for mechanical and physical properties of aggregates. Part 3: Determination of loose bulk density and voids. European Committee for Standardization.
- EN-1097-6 (2013) Tests for mechanical and physical properties of aggregates. Part 6: Determination of particle density and water absorption. European Committee for Standardization.
- Bernhardt, M.; Tellesbø, H.; Justnes, H.; Wiik, K. (2013) Mechanical properties of lightweight aggregates. J. Eur. Ceram. Soc. 33, 2731-2743. https://doi.org/10.1016/j.jeurceramsoc.2013.05.013
- Yashima, S.; Kanda, Y.; Sano, S. (1987) Relationship between particle size and fracture energy or impact velocity required to fracture as estimated from single particle crushing. Powder Technol. 51 [3], 277-282. https://doi.org/10.1016/0032-5910(87)80030-X
- Li, Y.; Wu, D.; Zhang, J.; Chang, L.; Dihua, W.; Fang, Z.; Shi, Y. (2000) Measurement and statistics of single pellet mechanical strength of differently shaped catalysts. Powder Technol. 113 [1-2], 176-184. https://doi.org/10.1016/S0032-5910(00)00231-X
- Moreno-Maroto, J.M.; González-Corrochano, B.; Alonso- Azcárate, J.; Rodríguez, L.; Acosta, A. (2018) Assessment of crystalline phase changes and glass formation by Rietveld-XRD method on ceramic lightweight aggregates sintered from mineral and polymeric wastes. Ceram. Int. 44, 11840-11851. https://doi.org/10.1016/j.ceramint.2018.03.274
- NIST (2012) Certificate of analysis. Standard reference material 676a. Alumina powder for quantitative analysis by X-ray diffraction. National Institute of Standards and Technology.
- Bish, D.L.; Post, J.E. (1993) Quantitative mineralogical analysis using the Rietveld full pattern fitting method. Am. Mineral. 78, 932-940.
- Yasukawa, K.; Terashi, Y.; Nakayama, A. (1998) Crystallinity analysis of glass-ceramics by the Rietveld method. J. Am. Ceram. Soc. 81 [11] 2978-2982. https://doi.org/10.1111/j.1151-2916.1998.tb02723.x
- De la Torre, A.G.; Bruque, S.; Aranda, M.A.G (2001) Rietveld quantitative amorphous content analyses. J. Appl. Crystallogr. 34 [2], 196-202. https://doi.org/10.1107/S0021889801002485
- Raith, M.M.; Raase, P.; Reinhardt, J. (2012) Guide to thin section microscopy. Second Edition. ISBN 978-3-00-037671-9 (PDF) (2012)
- Barnes, G.E. (2013) An apparatus for the determination of the workability and plastic limit of clays. Appl. Clay Sci. 80-81, 281-290. https://doi.org/10.1016/j.clay.2013.04.014
- Moreno-Maroto, J.M.; Cobo-Ceacero, C.J.; Uceda- Rodríguez, M.; Cotes-Palomino, T.; Martínez García, C.; Alonso-Azcárate, J. (2020) Unraveling the expansion mechanism in lightweight aggregates: Demonstrating that bloating barely requires gas. Constr. Build. Mater. 247, 118583. https://doi.org/10.1016/j.conbuildmat.2020.118583
- Cougny, G. (1990) Specifications for clayey raw materials used to produce expanded lightweight aggregates. Bull. Int. Assoc. Eng. Geol. 41, 47-55.
- Földvári, M. (2011) Handbook of thermogravimetric system of minerals and its use in geological practice. Occasional Papers of the Geological Institute of Hungary. Geological Institute of Hungary. Volume 213. (2011)
- Heller-Kallai, L.; Miloslavski, I.; Grayevsky, A. (1989) Evolution of hydrogen on dehydroxylation of clay minerals. Am. Mineral. 74, 818-320.
- Mathur, A.; Varma, I.K. (1992) Effect of structure on thermal behaviour of nadimide resins: 1. Polymer. 33 [22], 4845-4850. https://doi.org/10.1016/0032-3861(92)90701-W
- Piquero, T.; Vincent, H.; Vincent, C.: Bouix, J. (1995) Influence of carbide coatings on the oxidation behavior of carbon fibers. Carbon. 33 [4], 455-467. https://doi.org/10.1016/0008-6223(94)00170-5
- Mourad, A-H.I.; Akkad, R.O.; Soliman, A.A.; Madkour, T.M. (2009) Characterisation of thermally treated and untreated polyethylene-polypropylene blends using DSC, TGA and IR techniques. Plast. Rubber Compos. 38 [7], 265-278. https://doi.org/10.1179/146580109X12473409436625
- Selladurai, M.; Sundararajan, P.R.; Sarojadevi, M. (2012) Synthesis, thermal and mechanical properties of modified PMR/carbon fiber composites. Chem. Eng. J. 203, 333-347. https://doi.org/10.1016/j.cej.2012.06.049
- Kim, J.; Moon, T.J.; Howell, J.R. (2002) Cure kinetic model, heat of reaction, and glass transition temperature of AS4/3501-6 graphite-epoxy prepregs. J. Compos. Mater. 36 [21], 2479-2498. https://doi.org/10.1177/0021998302036021712
- Liu, W.; Varley, R.J.; Simon, G.P. (2007) Understanding the decomposition and fire performance processes in phosphorus and nanomodified high performance epoxy resins and composites. Polymer. 48 [8], 2345-2354. https://doi.org/10.1016/j.polymer.2007.02.022
- Li, S.; Zhang, Y.M.; Zhou, Y.F. (2012) Preparation and characterization of sol-gel derived zirconia coated carbon fiber. Surf. Coat. Technol. 206 [23], 4720-4724. https://doi.org/10.1016/j.surfcoat.2012.01.037
- Conley, J.E.; Wilson, H.; Kleinfelter, T.A.; and others (1948) Production of lightweight concrete aggregates from clays, shales, slates and other materials. US Bureau of mines report of investigation, 4401, 121 pp.
- EN-13055-1 (2002) Lightweight aggregates. Part 1: Lightweight aggregates for concrete, mortar and grout. European Committee for Standardization.
- Lo, T.Y.; Cui, H.Z. (2004) Effect of porous lightweight aggregate on strength of concrete. Mater. Lett. 58 [6], 916-919. https://doi.org/10.1016/j.matlet.2003.07.036
- Soriano-Carrillo, J. (1980) Influencia de la naturaleza mineralógica de las adiciones en el comportamiento de la pasta endurecida del cemento Portland. Rev. Obras Públ. 127 [3186], 861-867.
- Gadea, J.; Soriano, J.; Martín, A.; Campos, P.L.; Rodríguez, A.; Junco, C.; Adán, I.; Calderón, V. (2010) The alkali-aggregate reaction for various aggregates used in concrete. Mater. Construcc. 60 [299], 69-78. https://doi.org/10.3989/mc.2010.48708
- Wasserman, R.; Bentur, A. (1997) Effect of lightweight fly ash aggregate microstructure on the strength of concretes. Cem. Concr. Res. 27 [4], 525-537. https://doi.org/10.1016/S0008-8846(97)00019-7
- Nguyen, L.H.; Beaucour, A-L.; Ortola, S.; Noumowé, A. (2014) Influence of the volume fraction and the nature of fine lightweight aggregates on the thermal and mechanical properties of structural concrete. Constr. Build. Mater. 51, 121-132. https://doi.org/10.1016/j.conbuildmat.2013.11.019
- Kourti, I.; Cheeseman, C.R. (2010) Properties and microstructure of lightweight aggregate produced from lignite coal fly ash and recycled glass. Resour. Conserv. Recycl. 54 [11], 769-775. https://doi.org/10.1016/j.resconrec.2009.12.006
- González-Corrochano, B.; Alonso-Azcárate, J.; Rodas, M.; Luque, F.J.; Barrenechea, J.F. (2010) Microstructure and mineralogy of lightweight aggregates produced from washing aggregate sludge, fly ash and used motor oil. Cem. Concr. Compos. 32 [9], 694-707. https://doi.org/10.1016/j.cemconcomp.2010.07.014
- Erol, M.; Küçükbayrak, S.; Ersoy-Meriçboyu, A.; Öveçoḡlu, M.L. (2001) Crystallization behaviour of glasses produced from fly ash. J. Eur. Ceram. Soc. 21, 2835-2841. https://doi.org/10.1016/S0955-2219(01)00221-7
- Swanson, S.E. (1977) Relation of nucleation and crystalgrowth rate to the development of granitic textures. Am. Mineral. 62 [9-10] 966-978.