Study of the suitability of a new structural concrete manufactured with carbon fiber reinforced lightweight aggregates sintered from wastes

  1. J. M. Moreno-Maroto
  2. A. L. Beaucour
  3. B. González-Corrochano
  4. J. Alonso-Azcárate
Revista:
Materiales de construcción

ISSN: 0465-2746

Año de publicación: 2019

Volumen: 69

Número: 336

Tipo: Artículo

DOI: 10.3989/MC.2019.05719 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materiales de construcción

Resumen

Este estudio pretende comprobar la idoneidad de unos novedosos áridos ligeros sinterizados con residuos de fibra de carbono (CAs) en la fabricación de hormigón ligero estructural. Se prepararon probetas prismáticas de hormigón, utilizando estos CAs como fracción gruesa, comparándose a su vez con probetas fabricadas con un árido convencional, un árido ligero comercial y mortero. Las muestras de hormigón con los áridos CA (en adelante CAC) han dado lugar a valores de resistencia a compresión entre 35 y 55 MPa, así como a resultados bajos de densidad y conductividad térmica, mostrando además las ratios más altas al relacionar estos tres parámetros. Esto indicaría por tanto un mejor equilibrio entre las propiedades mecánicas y físicas que los obtenidos en las otras muestras estudiadas. Estos resultados apuntan a que los nuevos CAs podrían tener un gran potencial para su uso en hormigón ligero estructural, cumpliendo además los principios de la Economía Circular

Información de financiación

This research has been mainly supported by the research project PEII-2014-025-P of the Junta de Comunidades de Castilla-La Mancha (JCCM), the PhD grant number PRE-7911/2014 whose funds come from the Consejería de Educación, Cultura y Deportes of JCCM and the European Social Fund (DOCM 2014/10620 and DOCM 2016/12998 BDNS (Identif.): 323799.), and the grant received from the University of Castilla-La Mancha intended to stays in foreign centers (DOCM 2016/11635). A special thanks to the Erasmus + framework for its additional support.

Financiadores

Referencias bibliográficas

  • Weinecke, M.H.; Faulkner, B.P. (2002) Production of lightweight aggregate from waste materials. Min. Eng. 54 [11], 39-43.
  • EN-13055-1 (2002) Lightweight aggregates. Part 1: Lightweight aggregates for concrete, mortar and grout. European Committee for Standardization.
  • EN 206-1 (2000) Concrete. Part 1: Specification, performance, production and conformity. European Committee for Standardization.
  • EHE-08 (2008) Instrucción de Hormigón Estructural (EHE-08). Ministerio de Fomento, Gobierno de España.
  • Gerritse, A. (1981) Design considerations for reinforced lightweight concrete. Int. J. Cem. Compos. Lightweight Concrete. 3 [1], 57-69. https://doi.org/10.1016/0262-5075(81)90031-2
  • Torres, P.; Fernandes, H.R.; Olhero, S.; Ferreira, J.M.F. (2009)Incorporation of wastes from granite rock cutting and polishing industries to produce roof tiles. J. Eur. Ceram. Soc. 29[1], 23-30. https://doi.org/10.1016/j.jeurceramsoc.2008.05.045
  • Dondi, M.; Cappelletti, P.; D'Amore, M.; de Gennaro, R.; Graziano, S.F.; Langella, A.; Raimondo, M.; Zanelli, C. (2016) Lightweight aggregates from waste materials: Reappraisal of expansion behavior and prediction schemes for bloating. Constr. Build. Mater. 127, 394-409. https://doi.org/10.1016/j.conbuildmat.2016.09.111
  • Lynn, C.J.; Dhir, R.K.; Ghataora, G.S.; West, R.P. (2015) Sewage sludge ash characteristics and potential for use in concrete. Constr. Build. Mater. 98, 767-779. https://doi.org/10.1016/j.conbuildmat.2015.08.122
  • Wainwright, P.J.; Cresswell, D.J.F. (2001) Synthetic aggregates from combustion ashes using an innovative rotary kiln. Waste Manage. 21 [3], 241-246. https://doi.org/10.1016/S0956-053X(00)00096-9
  • De' Gennaro, R.; Langella, A.; D' Amore, M.; Dondi, M.;Colella, A.; Cappelletti, P.; De' Gennaro, M. (2008) Use of zeolite-rich rocks and waste materials for the production of structural lightweight concretes. Appl. Clay Sci. 41, 61-72. https://doi.org/10.1016/j.clay.2007.09.008
  • Mueller, A.; Schnell, A.; Ruebner, K. (2015) The manufacture of lightweight aggregates from recycled masonry rubble. Constr. Build. Mater. 98, 376-387. https://doi.org/10.1016/j.conbuildmat.2015.07.027
  • Moreno-Maroto, J.M.; González-Corrochano, B.; Alonso-Azcárate, J.; Rodríguez, L.; Acosta, A. (2017) Manufacturing of lightweight aggregates with carbon fiber and mineral wastes. Cem. Concr. Compos. 83, 335-348. https://doi.org/10.1016/j.cemconcomp.2017.08.001
  • Fitzer, E. (1987) The future of carbon-carbon composites. Carbon. 25[2], 163-190. https://doi.org/10.1016/0008-6223(87)90116-3
  • Tanyildizi, H. (2008) Effect of temperature, carbon fibers, and silica fume on the mechanical properties of lightweight concretes. New Carbon Mater., 23[4], 339-344. https://doi.org/10.1016/S1872-5805(09)60005-6
  • Park, S.B.; Lee, B.I. (1993) Mechanical Properties of Carbon-Fiber-Reinforced Polymer-Impregnated Cement Composites. Cem. Concr. Compos. 15[3], 153-163. https://doi.org/10.1016/0958-9465(93)90004-S
  • Zheng, Q.; Chung, D.D.L. (1989) Carbon fiber reinforced cement composites improved by using chemical agents. Cem. Concr. Res. 19[1], 25-41. https://doi.org/10.1016/0008-8846(89)90062-8
  • Garcés, P.; Fraile, J.; Vilaplana-Ortego, E.; Cazorla- Amorós, D.; Alcocel, E.G.; Andión, L.G. (2005) Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced portland cement mortars. Cem. Concr. Res. 35[2], 324-331. https://doi.org/10.1016/j.cemconres.2004.05.013
  • Chen, B.; Liu, J.; Wu, K. (2005) Electrical responses of carbon fiber reinforced cementitious composites to monotonic and cyclic loading. Cem. Concr. Res. 35[11], 2183-2191. https://doi.org/10.1016/j.cemconres.2005.02.004
  • Mingqing, S.; Zhuoqiu, L.; Qizhao, M.; Darong, S. (1999) A study on thermal self-monitoring of carbon fiber reinforced concrete. Cem. Concr. Res. 29[5], 769-771. https://doi.org/10.1016/S0008-8846(99)00006-X
  • Fu, X.; Chung, D.D.L. (1995) Contact electrical resistivity between cement and carbon fiber: Its decrease with increasing bond strength and its increase during fiber pull-out. Cem. Concr. Res. 25[7], 1391-1396. https://doi.org/10.1016/0008-8846(95)00132-V
  • Yasuda, Y. (1991) Sewage-sludge utilization in Tokyo. Water Sci. Technol. 23 [10-12], 1743-1752. https://doi.org/10.2166/wst.1991.0629
  • González-Corrochano, B.;Alonso-Azcárate, J.; Rodas, M. (2009) Production of lightweight aggregates from mining and industrial wastes. J. Environ. Manag. 90 [8], 2801-2812. https://doi.org/10.1016/j.jenvman.2009.03.009 PMid:19386411
  • EN-1097-3 (1998) Tests for mechanical and physical properties of aggregates. Part 3: Determination of loose bulk density and voids. European Committee for Standardization.
  • EN-1097-6 (2000) Tests for mechanical and physical properties of aggregates. Part 6: Determination of particle density and water absorption. European Committee for Standardization.
  • Bernhardt, M.; Tellesbø, H.; Justnes, H.; Wiik, K. (2013) Mechanical properties of lightweight aggregates. J. Eur. Ceram. Soc. 33, 2731-2743. https://doi.org/10.1016/j.jeurceramsoc.2013.05.013
  • De Santiago Buey, C.; Raya García, M. (2008) Análisis del peso específico y porosidad de materiales porosos mediante picnometría de helio. Ing. civil, ISSN 0213-8468, 151,95-103.
  • Moreno-Maroto, J.M.; González-Corrochano, B.; Alonso- Azcárate, J.; Rodríguez, L.; Acosta, A. (2017) Development of lightweight aggregates from stone cutting sludge, plastic wastes and sepiolite rejections for agricultural and environmental purposes. J. Environ. Manage. 200, 229-242. https://doi.org/10.1016/j.jenvman.2017.05.085 PMid:28582746
  • Li, Y.; Wu, D.; Zhang, J.; Chang, L.; Fang, Z.; Shi, Y. (2000) Measurement and statistics of single pellet mechanical strength of differently shaped catalysts. Powder Technol. 113 [1-2], 176-184. https://doi.org/10.1016/S0032-5910(00)00231-X
  • Yashima, S.; Kanda, Y.; Sano, S. (1987) Relationship between particle size and fracture energy or impact velocity required to fracture as estimated from single particle crushing. Powder Technol. 51, 277-282. https://doi.org/10.1016/0032-5910(87)80030-X
  • NF P18-452 (2017) Bétons - Mesure du temps d'écoulement des bétons et des mortiers au maniabilimètre. Association Francaise de Normalisation AFNOR.
  • RILEM (2002) Workability and Rheology of Fresh Concrete: Compendium of Tests. Report of RILEM Technical Committee TC 145-WSM. Workability of Special Concrete Mixes, 54-56.
  • ASTM C 597-16 (2016) Standard Test Method for Pulse Velocity Through Concrete. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • ASTM STP 169D (2006) Significance of Tests and Properties of Concrete and Concrete-Making Materials, ASTM International, West Conshohocken, PA.
  • EN-196-1 (2005) Methods of testing cement. Part 1: Determination of strength. European Committee for Standardization.
  • NF P18-459 (2010) Béton - Essai pour béton durci - Essai de porosité et de masse volumique. Association Francaise de Normalisation AFNOR.
  • Nguyen, L.H.; Beaucour, A-L.; Ortola, S.; Noumowé, A. (2014) Influence of the volume fraction and the nature of fine lightweight aggregates on the thermal and mechanical properties of structural concrete. Constr. Build. Mater. 51, 121-132. https://doi.org/10.1016/j.conbuildmat.2013.11.019
  • Ke, Y.; Beaucour, A-L.; Ortola, S.; Dumontet, H.; Cabrillac, R. (2009) Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Constr. Build. Mater. 23, 2821-2828. https://doi.org/10.1016/j.conbuildmat.2009.02.038
  • De' Gennaro, R.; Cappelletti, P.; Cerri, G.; De' Gennaro, M.; Dondi, M.; Graziano, S.F.; Langella, A. (2007) Campanian Ignimbrite as raw material for lightweight aggregates. Appl. Clay Sci. 37[1-2], 115-126. https://doi.org/10.1016/j.clay.2006.11.004
  • Hobbs, C. (1964) The physical properties of lightweight aggregates and concretes. Chemistry and Industry. April 11, 1964, 594-600.
  • Lo, T.Y.; Cui, H.Z. (2004) Effect of porous lightweight aggregate on strength of concrete. Mater. Lett. 58 [6] 916-919. https://doi.org/10.1016/j.matlet.2003.07.036
  • Wasserman, R.; Bentur, A. (1996) Interfacial interactions in lightweight aggregate concretes and their influence on the concrete strength. Cem. Concr. Compos. 18 [1], 67-76. https://doi.org/10.1016/0958-9465(96)00002-9
  • Ke, Y.; Ortola, S.; Beaucour, A-L.; Dumontet, H. (2010) Identification of microstructural characteristics in lightweight aggregate concretes by micromechanical modelling including the interfacial transition zone (ITZ). Cem. Concr. Res. 40 [11], 1590-1600. https://doi.org/10.1016/j.cemconres.2010.07.001