Las bacteriocinas y su efecto sinérgico con tecnologías emergentes en alimentos

  1. José Castellanos Rozo 1
  2. Jaqueline Galvis
  3. Rubén Pérez Pulido 2
  4. María José Grande Burgos 2
  5. Rosario Lucas 2
  6. Antonio Gálvez 2
  1. 1 Universidad de Boyacá, Colombia
  2. 2 Universidad de Jaén, España
Revista Mutis

ISSN: 2256-1498

Year of publication: 2022

Volume: 12

Issue: 2

Type: Article

DOI: 10.21789/22561498.1841 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista Mutis


Bacteriocins –peptides synthesized by bacteria that have great potential as food preservatives– are a good alternative to replace chemical additives and produce minimally processed foods. The more widely studied bacteriocins in the food industry are those derived from lactic acid bacteria (LAB) because they are Generally Regarded As Safe (GRAS). However, bacteriocins have certain disadvantages when applied to food, especially dairy products. Such drawbacks can be remedied by combining bacteriocins with other treatments emerging from the food industry. The objective of this research was to analyze the main bacteriocins used and their synergistic effect on pathogenic and/or spoilage bacteria, when applied in combination with other treatments such as chemical substances, lactoperoxidase system, high hydrostatic pressures, nanoparticles, bacteriophages and essential oils. The results of this study indicate that applying bacteriocins with other treatments can increase antimicrobial activity, which improves food safety. It is concluded that the best combinations of bacteriocins and emerging technologies are bacteriocins and nanoparticles and bacteriocins with bacteriophages, whose combinations inhibit the growth of both Gram-positive and Gram-negative bacteria. The advantages that such combinations offer are: They are easily applied to foods, are low cost, do not modify the sensory characteristics of the product, allow combating antimicrobial resistance and completely destroy microorganisms without giving them the opportunity to recover during the maturation or storage period.  

Bibliographic References

  • Aguiar, S J., Pérez, M. I. & Cepero, R.O. (2007). Efecto de los campos magnéticos en la conservación de la leche cruda sin refrigerar REDVET. Revista Electrónica de Veterinaria, 7(4), 1695-7504.
  • Alegría, A., Delgado, S., Roces, C., López, B. & Mayo, B. (2010). Bacteriocins produced by wild Lactococcus lactis strains isolated from traditional, starter-free cheeses made of raw milk. International Journal of Food Microbiology, 143(1-2), 61-66.
  • Ananou, S., Gálvez, A., Martínez-Bueno, M., Maqueda, M., & Valdivia, E. (2005). Syner-gistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7. Journal of Applied Microbiology, 99(6), 1364–1372.
  • Ananou, S., Muñoz, A., Gálvez, A., Martínez-Bueno, M., Maqueda, M. & Valdivia, E. (2008). Optimization of enterocin AS-48 production on a whey-based substrate. International Dairy Journal, 18(9), 923-927.
  • Arqués, J. L., Rodríguez, E. & Medina, M. (2011a). Inactivation of Gram-positive patho-gens in milk by lactic acid bacteria bacteriocins in combination with the lactoperoxidasa system. Milchwissenschaft-Milk Science International, 66(3), 314-316.
  • Arqués, J. L., Rodríguez, E., Nuñez, M., & Medina, M. (2011b). Combined effect of reu-terin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control, 22(3-4), 457-461.
  • Arqués, J. L., Rodríguez, E., Nuñez, M. & Medina, M. (2008). Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on Listeria monocytogenes and Staphylococcus aureus in cuajada, a semisolid dairy product manufactured in Spain. Journal of Dairy Science, 91(1), 70-75.
  • Arqués, J. L., Fernández, J., Gaya, P., Nuñez, M., Rodríguez, E. & Medina, M. (2004). An-timicrobial activity of reuterin in combination with nisin against food-borne pathogens. Interna-tional Journal of Food Microbiology, 95(2), 225-229.
  • Ávila, M., Gómez-Torres, N., Hernández, M. & Garde, S. (2014). Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridi-um species, International Journal of Food Microbiology, 172, 70-75.
  • Azizkhani, M., Misaghi, A., Basti, A. A., Gandomi, H., & Hosseini, H. (2013). Effects of Za-taria multiflora Boiss. essential oil on growth and gene expression of enterotoxins A, C and E in Staphylococcus aureus ATCC 29213. International Journal of Food Microbiology, 163(2-3), 159-165.
  • Bajpai, V. K., Yoon, J. I., Bhardwaj, M., & Kang, S. C. (2014). Anti-listerial synergism of leaf essential oil of Metasequoia glyptostroboides with nisin in whole, low and skim milks. Asian Pacific Journal of Tropical Medicine, 7(8), 602–608.
  • Bernela, M., Kaur, P., Chopra, M., & Thakur, R. (2014). Synthesis, characterization of nisin loaded alginate/chitosan/pluronic composite nanoparticles and evaluation against microbes. LWT - Food Science and Technology, 59(2), 1093-1099.
  • Boulares, M., Mankai, M. & Hassouna, M. (2011). Effect of activating lactoperoxidase system in cheese milk on the quality of Saint-Paulin cheese. International Journal of Dairy Tech-nology, 64(1), 75-83.
  • Bouttefroy, A. & Millière, J. B. (2000). Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. International Journal of Food Microbiology, 62(1-2), 65-75.
  • Bueno, E., García, P., Martínez, B., & Rodríguez, A. (2012). Phage inactivation of Staphy-lococcus aureus in fresh and hard-type cheeses. International Journal of Food Microbiology, 158(1), 23-27.
  • Branen, J. K. & Davidson, P. M. (2004). Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. International Journal of Food Microbiology, 90(1), 63-74.
  • Bernela, M., Kaur, P., Chopra, M., & Thakur, R. (2014). Synthesis, characterization of nisin loaded alginate-chitosan-pluronic composite nanoparticles and evaluation against microbes. LWT - Food Science and Technology, 59(2P1), 1093-1099.
  • Calo, J. R., Crandall, P. G., O’Bryan, C. A. & Ricke, S. C. (2015). Essential oils as antimicro-bials in food systems - A review. In Food Control, 54, 111-119.
  • Cao-Hoang L, Chaine A, Grégoire L., & Waché Y. (2010). Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese. Food Microbiology, 27(7), 940-944.
  • Carter, C. D., Parks, A., Abuladze, T., Li, M., Woolston, J., Magnone, J., Senecal, A., Kro-pinski, A. M., & Sulakvelidze, A. (2012). Bacteriophage cocktail significantly reduces Escherichia coli O157: H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage, 2(3), 178-185.
  • CDC, Centro para el control y la prevención de enfermedades de los Estados Unidos. (Jul. 16, 2021).
  • Cheigh, C. I., & Pyun, Y. R. (2005). Nisin biosynthesis and its properties. Biotechnology Letters, 27, 1641-1648.
  • Chili, H. & Holo, H. (2018). Synergistic antimicrobial activity between the broad-spectrum bacteriocin garvicin KS and nisin, farnesol and polymyxin B against gram-positive and gram-negative bacteria. Current Microbiology, 75(3), 272–277.
  • Cintas, L. M., M. P. Casaus, C. Hérranz, I. F. & Hernández P. E. (2001). Review: Bacteriocins of lactic acid bacteria. Food Science and Technology International, 7, 281-305.
  • Cobo Molinos, A., Abriouel, H., López, R. L., Valdivia, E., Omar, N. B. & Gálvez, A. (2008). Combined physico-chemical treatments based on enterocin AS-48 for inactivation of Gram-negative bacteria in soybean sprouts. Food and Chemical Toxicology, 46(8), 2912-2921.
  • Coffey, B., Mills, S., Coffey, A., McAuliffe, O., & Ross, R.P. (2010). Phage and their lysins as biocontrol agents for food safety applications. Annual Review of Food Science and Technology, 1, 449–468.
  • Cotter, P. D., Ross, R. P. & Hill, C. (2013). Bacteriocins a viable alternative to antibiotics? Nature Reviews Microbiology, 11, 95-105.
  • Chang, R., Lu, H., Li, M., Zhang, S., Xiong, L. & Sun, Q. (2018). Preparation of extra-small nisin nanoparticles for enhanced antibacterial activity after autoclave treatment. Food Chemistry, 245, 756-760.
  • Da Silva Sabo, S., Vitolo, M., González, J. M. D. & Oliveira, R. P. de S. (2014). Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International, 64, 527-536.
  • de Freire Bastos, M. D. C., Varella Coelho, M. L., & da Silva Santos, O. C. (2015). Re-sistance to bacteriocins produced by gram-positive bacteria. Microbiology, 161(4), 683–700.
  • de Freire Bastos, M. do C. & Ceotto, H. (2011). Bacterial antimicrobial peptides and food preservation. CABI Publishing, En Natural Antimicrobials in Food Safety and Quality (pp. 62-76).
  • Egan, K., Field, D., Rea, M. C., Ross, R. P., Hill, C., & Cotter, P. D. (2016). Bacteriocins: ¿Novel solutions to age-old spore-related problems? Frontiers in Microbiology, 7, 1-21.
  • Ehsani, A., Rezaeiyan, A., Hashemi, M., Aminzare, M., Jannat, B., & Afshari, A. (2019). Antibacterial activity and sensory properties of Heracleum persicum essential oil, nisin, and Lac-tobacillus acidophilus against Listeria monocytogenes in cheese. Veterinary World, 12(1): 90-96.
  • Engelke, G., Z., Gutowski-Eckel, M., Hammelmann, M., & Entian K. D. (1992). Biosynthesis of the lantibiotic nisin: genomic organization and membrane localization of the NisB protein. Applied and Environmental Microbiology, 58, 3730-3743.
  • Ennahar, S., Sashihara, T., Sonomoto, K., & Ishizaki, A. (2000). Class IIa bacteriocins: Bio-synthesis, structure and activity. FEMS Microbiology Reviews, 24(1), 85-106.
  • Espitia, P. J. P., De Fátima Ferreira Soares, N., Teófilo, R. F., Dos Reis Coimbra, J. S., Vitor, D. M., Batista, R. A., Ferreira, S. O., Andradea, N.J., Alves, E. A., Medeiros, E. A. A. (2013). Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO na-noparticles. Carbohydrate Polymers, 94(1), 199–208.
  • European Comission. (Ene. 30, 2022). Nanomaterials., a
  • Favaro, L., Barretto Penna, A. L. & Todorov, S. D. (2015). Bacteriocinogenic LAB from cheeses - Application in biopreservation? Trends in Food Science & Technology, 41, 37-48.
  • Fischetti V. A. (2010). Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. International Journal of Medical Microbiology, 300(6), 357-362.
  • Field, D., Cotter, P. D., Ross, R. P. & Hill, C. (2015). Bioengineering of the model lantibiotic nisin. Bioengineered, 6(4), 187-192.
  • Friedman, M., Henika, PR., & Mandrell, R. E. (2002). Bactericidal activities of plant es-sential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal Food Protection, 65(10), 1545-60.
  • Gálvez A., López R.L., Pulido R.P., Grande Burgos M.J. (2014). Natural Antimicrobials for Food Biopreservation. Springer-Verlag, En: Food Biopreservation. SpringerBriefs in Food, Health, and Nutrition. (pp. 3-14). Springer, New York. Gálvez, A., Maqueda, M., Martínez-Bueno, M., Valdivia, E. (1989a). Acción bactericida y bacteriolítica del antibiótico peptídico AS-48 contra bacterias Gram positivas, Gram negativas y otros organismos. Research in Microbiology, 140 (1), 57–68. Gálvez, A.; Valdivia, E.; Martínez, M.; Maqueda, M. (1989b). Bactericidal action of peptide antibiotic AS-48 against Escherichia coli K-12. Canadian Journal of Microbiology, 35, 318-321.
  • Gänzle, M. G. (2004). Reutericyclin: biological activity, mode of action, and potential applications. Applied Microbiology and Biotechnology, 64(3), 326-332.
  • Gänzle, M. G. & Vogel, R. F. (2003). Studies on the mode of action of reutericyclin. Ap-plied and Environmental Microbiology, 69(2), 1305-1307.
  • Gänzle, M. G., Höltzel, A., Walter, J., Jung, G. & Hammes, W. P. (2000). Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Applied and Environmental Microbi-ology, 66(10), 4325-4333.
  • Gómez-López, V. M., Ragaert, P., Debevere, J. & Devlieghere, F. (2007). Pulsed light for food decontamination: a review. Trends in Food Science and Technology, 18(9), 464-473.
  • González, L., Sandoval, H., Sacristán, N., Castro, J. M., Fresno, J. M. & Tornadijo, M. E. (2007). Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control, 18(6), 716-722.
  • Grande Burgos, M., Pulido, R., del Carmen López Aguayo, M., Gálvez, A. & Lucas, R. (2014). The cyclic antibacterial peptide enterocin as-48: isolation, mode of action, and possible food applications. International Journal of Molecular Sciences, 15(12), 22706-22727.
  • Gratia, A. (1925). Sur un remarquable exemple d’antagonisme entre deux souches de colibacille. Société de Biologie, 93, 1040-1041.
  • Heinrich, V., Zunabovic, M., Bergmair, J., Kneifel, W. & Jäger, H. (2015). Post-packaging application of pulsed light for microbial decontamination of solid foods: A review. Innovative Food Science and Emerging Technologies, 30, 145-156.
  • Heng N.C.K., Wescombe P.A., Burton J.P., Jack R.W. & Tagg J.R. (2007) The Diversity of Bacteriocins in Gram-Positive Bacteria. In: Riley M.A., Chavan M.A. (eds) Bacteriocins. Springer, Berlin, Heidelberg.
  • Herrera Barros, A.P., Acevedo Morantes, M.T., Castro Hoyos, M.I. & Marrugo Ospino, L.J. (2016). Preparación de nanopartículas de quitosano modificadas con alginato de sodio con potencial para la liberación controlada de medicamentos. Revista EIA, 12(E3), 75-83.
  • Ibarra-Sánchez, L. A., El-Haddad, N., Mahmoud, D., Miller, M. J. & Karam, L. (2020). Invited review: Advances in nisin use for preservation of dairy products. Journal of Dairy Science. 103(3), 2041-2052.
  • INS, Instituto Nacional de Salud de Colombia (Feb. 2, 2021). Informe de evento enfer-medades transmitidas por alimentos, Colombia, 2017., accesado el 4 de febrero del 2022
  • Jorquera, D., Navarro, C., Rojas, V., Turra, G., Robeson, J. & Borie, C. (2015). The use of a bacteriophage cocktail as a biocontrol measure to reduce Salmonella enterica serovar enteritidis contamination in ground meat and goat cheese. Biocontrol Science and Technology, 25(8), 970-974.
  • Kantono, K., Hamid, N., Oey, I., Wang, S., Xu, Y., Ma, Q., Faridnia, F. & Farouk, M. (2019). Physicochemical and sensory properties of beef muscles after pulsed electric field processing. Food research international, 121, 1-11.
  • Kaur, G., Singh, T. P. & Malik, R. K. (2013). Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant variants to common food preservatives. Brazilian Journal of Microbiology, 44(1), 63–71.
  • Kavas, G., Kavas, N. & Saygili, D. (2015). The effects of thyme and clove essential oil for-tified edible films on the physical, chemical and microbiological characteristics of kashar cheese, Journal of Food Quality, 38, 405-412.
  • Kazi, M. & Annapure, U. S. (2016). Bacteriophage biocontrol of foodborne pathogens. Journal of Food Science and Technology, 53, 1355-1362
  • Khorshidian, N., Yousefi, M., Khanniri, E. & Mortazavian, A. M. (2017). Potential applica-tion of essential oils as antimicrobial preservatives in cheese. Innovative Food Science & Emerging Technologies, 45, 62-72
  • Komora, N., Maciel, C., Pinto, C. A., Ferreira, V., Brandão, T. R. S., Saraiva, J. M. A., Castro, S. M. & Teixeira, P. (2020). Non-thermal approach to Listeria monocytogenes inactivation in milk: The combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Micro-biology, 86, 103315.
  • Langa, S., Martín-Cabrejas, I., Montiel, R., Landete, J. M., Medina, M. & Arqués, J. L. (2014). Short communication: Combined antimicrobial activity of reuterin and diacetyl against foodborne pathogens. Journal of Dairy Science, 97(10), 6116-21.
  • Leverentz, B., Conway, WS, Camp, MJ, Janisiewicz, WJ, Abuladze, T., Yang, M., Saftner, R. & Sulakvelidze, A. (2003). Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied and Environmental Microbiology, 69(8), 4519–4526.
  • Lin, D. M., Koskella, B., & Lin, H. C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeu-tics, 8(3), 162.
  • Lin, X. B., Lohans, C. T., Duar, R., Zheng, J., Vederas, J. C., Walter, J. & Gänzle, M. (2015). Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri. Applied and Environ-mental Microbiology, 81(6), 2032-2041.
  • Lopes, N. A., Barreto Pinilla, C. M. & Brandelli, A. (2019). Antimicrobial activity of lyso-zyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocolloids, 93, 1-9.
  • López-Pedemonte, T. J., Roig-Sagués, A. X., Trujillo, A. J., Capellas, M. & Guamis, B. (2003). Inactivation of spores of Bacillus cereus in cheese by high hydrostatic pressure with the addition of nisin or lysozyme. Journal of Dairy Science, 86(10), 3075-3081.
  • Macwana, S. & Muriana, P. M. (2012). Spontaneous bacteriocin resistance in Listeria monocytogenes as a susceptibility screen for identifying different mechanisms of resistance and modes of action by bacteriocins of lactic acid bacteria. Journal of Microbiological Methods, 88(1), 7–13.
  • Martínez, B., García, P. & Rodríguez, A. (2019). Swapping the roles of bacteriocins and bacteriophages in food biotechnology. Current Opinion in Biotechnology, 56, 1-6.
  • Martínez-Bueno, M., Valdivia, E., Gálvez, A., Coyette, J. & Maqueda, M. (1998). Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in En-terococcus faecalis. Molecular microbiology, 27,347–358.
  • Mirhosseini, M. & Afzali, M. (2016). Investigation into the antibacterial behavior of sus-pensions of magnesium oxide nanoparticles in combination with nisin and heat against Escherichia coli and Staphylococcus aureus in milk. Food Control, 68, 208-215.
  • Montiel, R., Martín-Cabrejas, I. & Medina, M. (2015). Reuterin, lactoperoxidase, lac-toferrin and high hydrostatic pressure onthe inactivation of food-borne pathogens in cooked ham. Food Control, 51, 122-128.
  • Moosavy, M. H., Basti, A. A., Misaghi, A., Salehi, T. Z., Abbasifar, R., Mousavi, H. A. E., Alipour, M., Razavi, N. E., Gandomi, H. & Noori, N. (2008). Effect of Zataria multiflora Boiss. es-sential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial cell membranes. Food Research International, 41(10), 1050-1057.
  • Muñoz, A., Ananou, S., Gálvez, A., Martínez-Bueno, M., Rodríguez, A., Maqueda, M. & Valdivia, E. (2007). Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: Bactericidal synergism with heat. International Dairy Journal, 17(7), 760-769.
  • Muñoz, A., Maqueda, M., Gálvez, A., Martínez-Bueno, M., Rodríguez, A. & Valdivia, E. (2004). Control of psychrotrophic enterotoxicogenic B. cereus in manchego type cheese by an enterococcal strain producing enterocin AS-48. Journal of Food Protection, 67(7), 1517-1521.
  • Naskar, A. & Kim, K-s (2021). Potential novel food-related and biomedical applications of nanomaterials combined with bacteriocins. Pharmaceutics, 13 (1), 86.
  • Nieto-Lozano, J. C., Reguera-Useros, J. I., Peláez-Martínez, M. del C., Sacristán-Pérez-Minayo, G., Gutiérrez-Fernández, Á. J. & la Torre, A. H. de. (2010). The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control, 21(5), 679–685.
  • O’Flynn, G., Ross, RP., Fitzgerald, GF. & Coffey, A. (2004). Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157: H7. Applied and Environmental Microbiology, 70(6), 3417-3424.
  • O'Sullivan, L., Ross R. P. & Hill, C. (2002). Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie, 84, 593-604.
  • Pagán, R., Mañas, P., Alvarez, I. & Condón, S. (1999). Resistance of Listeria monocyto-genes to ultrasonic waves under pressure at sublethal (Manosonication) and lethal (Manother-mosonication) temperatures. Food Microbiology, 16, 139-148.
  • OPS, Organización Panamericana de la Salud (feb. 2, 2022). Enfermedades transmitidas por alimentos.
  • Parsaeimehr, M., Basti, A.A., Radmehr, B., Misaghi, A., Abbasifar, A., Karim, G., Rokni N., Motlagh, M.S., Gandomi, H., Noori, N. & Khanjari, A. (2010). Effect of Zataria multiflora Boiss essential oil, nisin, and their combination on the production of enterotoxin C and α-hemolysin by Staphylococcus aureus. Foodborne Pathogens and Disease, 7, 299-305.
  • Pérez-Pulido, R., Grande Burgos, M. J., Gálvez, A. & Lucas López, R. (2016). Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria. Critical reviews in biotechnology, 36(5), 851-861.
  • Pérez-Pulido, R., Toledo, J., Grande, M. J., Gálvez, A. & Lucas, R. (2015). Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp. International Journal of Food Microbiology, 196, 62-69.
  • Pimentel-Filho, N. de J., Mantovani, H. C., de Carvalho, A. F., Dias, R. S. & Vanetti, M. C. D. (2014). Efficacy of bovicin HC5 and nisin combination against Listeria monocytogenes and Staphylococcus aureus in fresh cheese. International Journal of Food Science and Technology, 49(2), 416-422.
  • Preciado, G. M., Michel, M. M., Villarreal-Morales, S. L., Flores-Gallegos, A. C., Aguirre-Joya, J., Morlett-Chávez, J., Aguilar C. N., Rodríguez-Herrera, R. (2016). Bacteriocins and Its use for multidrug-resistant Bacteria. En Academic Press. Antibiotic resistance: mechanisms and New antimicrobial Approaches. (pp. 329-349).
  • Raghunath, A. & Perumal, E. (2017). Metal oxide nanoparticles as antimicrobial agents: a promise for the future. International Journal of Antimicrobial Agents, 49(2), 137-152. Rehaiem, A., Martínez, B., Manai, M., & Rodríguez, A. (2010). Production of enterocin A by En-terococcus faecium MMRA isolated from “Rayeb”, a traditional Tunisian dairy beverage. Journal of Applied Microbiology, 108(5), 1685-1693.
  • Rodríguez-Rubio, L., Martínez, B., Donovan, D. M., Rodríguez, A. & García, P. (2013). Bacteriophage virion-associated peptidoglycan hydrolases: Potential new enzybiotics. Critical Reviews in Microbiology, 39(4), 427-434.
  • Rodríguez, E., Calzada, J., Arqués, J. L., Rodríguez, J. M., Nuñez, M. & Medina, M. (2005). Antimicrobial activity of pediocin-producing Lactococcus lactis on Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 in cheese. International Dairy Journal, 15(1), 51-57.
  • Rodriguez, E., Arques, J. L., Nuñez, M., Gaya, P., & Medina, M. (2005). Combined effect of high-pressure treatments and bacteriocin-producing lactic acid bacteria on inactivation of Escherichia coli O157:H7 in raw-milk cheese. Applied and Environmental Microbiology, 71(7), 3399-3404.
  • Rodríguez, J. M., Martínez, M. I. & Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacte-riocin from lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 42(2), 91-121.
  • Salgado, P. R., Di Giorgio, L., Musso, Y. S. & Mauri, A. N. (2019). Bioactive Packaging: combining nanotechnologies with packaging for improved food functionality. En Micro and nano technologies, nanomaterials for food applications (pp. 233–270).
  • Sánchez-Hidalgo, M., Montalbán-López, M., Cebrián, R., Valdivia, E., Martínez-Bueno, M. & Maqueda, M. (2011). AS-48 bacteriocin: Close to perfection. In Cellular and Molecular Life Sciences. 68, 2845-2857.
  • Santos, J. C. P., Sousa, R. C. S., Otoni, C. G., Moraes, A. R. F., Souza, V. G. L., Medeiros, E. A. A., Espitia, J.P., Pires, A.C., Coimbra, J.S. & Soares, N. F. F. (2018). Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innovative Food Science and Emerging Technologies, 48, 174-194.
  • Schirru, S., Todorov, S. D., Favaro, L., Mangia, N. P., Basaglia, M., Casella, S. & Deiana, P. (2012). Sardinian goat’s milk as source of bacteriocinogenic potential protective cultures. Food Control, 25(1), 309–320.
  • Seifu, E., Buys, E. M. & Donkin, E. F. (2005). Significance of the lactoperoxidase system in the dairy industry and its potential applications: A review. Trends in Food Science and Technology, 16(4), 37-154.
  • Silva, F. V. M. & Gibbs, P. A. (2012). Thermal pasteurization requirements for the inacti-vation of Salmonella in foods. Food Research International, 45(2), 695-699.
  • Son, HM., Duc, HM., Masuda, Y., Honjoh, K.I. & Miyamoto, T. (2018). Application of bac-teriophages in simultaneously controlling Escherichia coli O157:H7 and extended-spectrum beta-lactamase producing Escherichia coli. Applied Microbiology and Biotechnology. 102(23), 10259-10271.
  • Tabla, R., Martínez, B., Rebollo, J.E., González, J., Ramírez, M.R., Roa, I., Rodríguez, A. & García, P. (2012). Bacteriophage performance against Staphylococcus aureus in milk is improved by high hydrostatic pressure treatments. International Journal Food Microbiology, 156(3), 209-213.
  • Tauxe, R. V. (2001). Food safety and irradiation: Protecting the public from foodborne infections. Emerging Infectious Diseases, 7, 516-521.
  • Téllez-Luis, S. J., Ramírez, J. A., Pérez-Lamela, C., Vázquez, M. & Simal-Gándara, J. (2001). Aplicación de la alta presión hidrostática en la conservación de los alimentos. Ciencia y Tecnología Alimentaria, 3(2), 66-80.
  • Todorov, S. D. (2019). What Bacteriocinogenic Lactic Acid Bacteria Do in the Milk? En: Academic Press, Raw Milk: Balance Between Hazards and Benefits. (pp. 149–174). Elsevier.
  • Tulini, F. L., Gomes, B. C. & De Martinis, E. C. P., (2011). Partial purification and charac-terization of a bacteriocin produced by Enterococcus faecium 130 isolated from mozzarella cheese. Ciência e Tecnologia de Alimentos, 31(1), 155-159.
  • Van Tassell, M. L., Ibarra-Sánchez, L. A., Hoepker, G. P. & Miller, M. J. (2017). Hot topic: Antilisterial activity by endolysin PlyP100 in fresh cheese, Journal of Dairy Science, 100(4), 2482-2487.
  • WHO. World Health Organization (Ene. 30, 2022). WHO’s first ever global estimates of foodborne diseases find children under 5 account for almost one third of deaths.
  • Wirawan, R. E., Klesse, N. A., Jack, R. W. & Tagg, J. R. (2006). Molecular and genetic characterization of a novel nisin variant produced by Streptococcus uberis. Applied and Environ-mental Microbiology, 72(2), 1148-1156.
  • Yildirim, Z., Bilgin, H., Isleroglu, H., Tokatli, K., Sahingil, D. & Yildirim, M. (2014). Enterocin HZ produced by a wild Enterococcus faecium strain isolated from a traditional, starter-free pickled cheese. The Journal of dairy research, 81(2), 164-72.
  • Zacharof, M. P., Coss, G. M., Mandale, S. J. & Lovitt, R. W. (2013). Separation of lactobacilli bacteriocins from fermented broths using membranes. Process Biochemistry, 48(8), 1252-1261.
  • Zhao, X., Shi, C., Meng, R., Liu, Z., Huang, Y., Zhao, Z. & Guo N. (2016). Effect of nisin and perilla oil combination against Listeria monocytogenes and Staphylococcus aureus in milk. Journal of Food Science and Technology, 53(6), 2644-2653.
  • Zohri, M., Alavidjeh, M. S., Haririan, I., Ardestani, M. S., Ebrahimi, S. E. S., Sani, H. T. & Sadjadi, S. K. (2010). A comparative study between the antibacterial effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growth of Staphylococcus aureus in raw and pas-teurized milk samples. Probiotics and Antimicrobial Proteins, 2(4), 258–266.
  • Zhou, H., Fang, J., Tian, Y. & Lu, X. Y. (2014). Mechanisms of nisin resistance in Gram-positive bacteria. Annals of Microbiology, 64, 413-420.