Interpretation of new gravity survey in the seismogenic Upper Chelif Basin, North of Algeriadeep structure and modeling

  1. Mohamed Bendali 1
  2. Abdeslam Abtout
  3. Boualem Bouyahiaoui
  4. Hassina Boukerbout
  5. Abbas Marok 2
  6. Matías Reolid 3
  1. 1 Centre Universitaire Khemis Miliana
    info

    Centre Universitaire Khemis Miliana

    Khemis Miliana, Argelia

    ROR https://ror.org/05n2gzs35

  2. 2 University of Tlemcen
  3. 3 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2022

Volumen: 48

Número: 2

Páginas: 205-224

Tipo: Artículo

DOI: 10.1007/S41513-022-00190-7 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

La Cuenca de Chelif (Norte de Argelia) es una de las zonas sísmicamente más activas del Mediterráneo occidental. Constituye un área clave para el estudio de las estructuras neotectónicas y su contexto geodinámico. Sin embargo, el sector oriental de esta Cuenca, denominado Cuenca Superior de Chelif, es una región desconocida desde el punto de vista geofísico, estructural y de evidencias neotectónicas. El objetivo de este trabajo es realizar un estudio gravimétrico que permita determinar la arquitectura estructural de la Cuenca Superior de Chelif. Este objetivo se ha abordado con el empleo de diferentes métodos de procesado de nuevos datos gravimétricos, como puede ser el método de gradientes, el de continuación, deconvolución de Euler, y la transformada de Ridgelet. Estos métodos de procesamiento son empleados para examinar las relaciones entre las anomalías de la gravedad identifcadas y las estructuras que las originan, incluidas aquellas de carácter tectónico. El mapa de anomalías de Bouguer procesado con distintos métodos muestra por primera vez imágenes bidimensionales y tridimensionales del área de estudio. Las principales anomalías gravimétricas identifcadas muestran la presencia de cuerpos geológicos densos, profundamente enraizados. Los alineamientos gravimétricos identifcados se correlacionan bien con estructuras geológicas locales y regionales. Entre estas estructuras destaca la falla inversa de Oued El Fodda, relacionada con el terremoto de 1980 de magnitud 7.2 identifcado por un alineamiento NE-SW. Además, nuevas estructuras y contactos en superfcie y en profundidad han sido detectados, así como aquellos que limitan la cuenca. Las estructuras identifcadas en profundidad muestran que el espesor del relleno de la cuenca es variable.

Referencias bibliográficas

  • Abtout, A., Boukerbout, H., Bouyahiaoui, B., & Gibert, D. (2014). Gravimetric evidences of active faults and underground structure of the Chelif seismogenic basin (Algeria). Journal of African Earth Sciences, 99, 363–373. https://doi.org/10.1016/j.jafrearsci. 2014.02.011
  • Aïfa, T., & Zaagane, M. (2014). Neotectonic deformation stages in the central Ouarsenis culminating zone, Northwestern Algeria. Arabian Journal of Geosciences, 8, 2667–2680. https://doi.org/ 10.1007/s12517-014-1385-z
  • Anderson, H., & Jackson, J. (1987). Active tectonics of the Adriatic region. Geophysical Journal of the Royal Astronomical Society, 91, 937–983.
  • Anderson, R. V. (1936). Geology in the coastal atlas of western Algeria. Memoir of the Geological Society of America, 4, 450.
  • Arab, M., Bracène, R., Roure, F., Zazoun, R. S., Mahdjoub, Y., & Badji, R. (2015). Source rocks and related petroleum systems of the Chelif basin (western Tellian domain, north Algeria). Marine and Petroleum Geology, 64, 363–385.
  • Auzende, J., Bonnin, M., & Olivet, J. L. (1973). The origin of the western Mediterranean basin. Journal of the Geological Society, 129, 607–620.
  • Auzende, J., Bonnin, M., & Olivet, J. L. (1975). La marge NordAfricaine considérée comme marge active. Bulletin de la Société Géologique de France, 17, 486–495.
  • Aydogan, D. (2011). Extraction of lineaments from gravity anomaly maps using the gradient calculation: Application to Central Anatolia. Earth Planet Sp, 63, 903–913. https://doi.org/10.5047/eps. 2011.04.003
  • Baranov, V. (1953). Calcul du gradient vertical du champ de gravité ou du champ magnétique mesuré à la surface du sol. Earth Sciences Geophysical Prospecting, 1, 171–191. https://doi.org/10.1111/j. 1365-2478.1953.tb01139.x
  • Belkebir, L., Bessedik, M., Ameur-Chehbeur, A., & Anglada, R. (1996). Le Miocène des bassins nord-occidentaux d’Algérie: Biostratigraphie et eustatisme. Géologie de l’Afrique et de l’Atlantique. Bulletin des centres de recherches exploration-production Elf Aquitaine. Mémoire, 16, 553–561. http://pascal-franc is.inist.fr/vibad/index.php?action=getRecordDetail&idt=62632 59.
  • Bendali, M., Bouyahiaoui, B., Belmecheri, A., Bentridi, S. E., & Abtout, A. (2019a). The new gravimetric network of the upper Chelif basin. Mediterranean Journal of Modeling and Simulation, 11, 058–068.
  • Bendali, M., Bouyahiaoui, B., Boukerbout, H., Nèche, B., Bentridi, S. E., & Abtout, A. (2019b). Gravimetric study of the Khemis Miliana plain (upper Chelif basin): Structure of the transition zone between the Chelif and Mitidja basin (North of Algeria). In: Rossetti, F. Et al. (eds.), The Structural Geology Contribution to the Africa-Eurasia Geology: Basement and Reservoir Structure, Ore Mineralisation and Tectonic Modelling. CAJG 2018. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham. https://doi. org/10.1007/978-3-030-01455-1_60.
  • Bezzeghoud, M., Ayadi, A., Sebaï, A., & Benhallou, H. (1994). Seismogenic zone survey by Algerian Telemetered Seismological Network; case-study of Rouina earthquake, 19 January 1992. Physics of the Earth and Planetary Interiors, 84, 235–246.
  • Bezzeghoud, M., Dimitrov, D., Ruegg, J. C., & Lammali, K. (1995). Faulting mechanism of the El Asnam (Algeria) 1954 and 1980 earthquakes from modelling of vertical movements. Tectonophysics, 249, 249–266.
  • Bhattacharyya, B. K., & Chan, K. C. (1977). Reduction of magnetic and gravity data on an arbitrary surface acquired in a region of high topographic relief. Geophysics, 42, 1411–1430.
  • Bougrine, A., Yelles-Chaouche, A., & Calais, E. (2019). Active deformation in Algeria from continuous GPS measurements. Geophysical Journal International, 217, 572–588. https://doi.org/10.1093/ gji/ggz035
  • Boukerbout, H., Abtout, A., Gibert, D., Henry, H., Bouyahiaoui, B., & Derder, M. E. M. (2018). Identifcation of deep magnetized structures in the tectonically active Chlef area (Algeria) from aeromagnetic data using wavelet and ridgelet transforms. Journal of Applied Geophysics, 154, 167–181. https://doi.org/10.1016/j. jappgeo.2018.04.026
  • Boukerbout, H., & Gibert, D. (2006). Identifcation of sources of potential felds with the continuous wavelet transform: Twodimensional ridgelet analysis. Journal of Geophysical Research, 111, 1–11.
  • Boukerbout, H., Gibert, D., & Sailhac, P. (2003). Identifcation of sources of potential felds with the continuous wavelet transform: Application to VLF data. Geophysical Research Letters, 30, 1–4. https://doi.org/10.1029/2003GL016884
  • Bouyahiaoui, B., Abtout, A., Hamai, L., Boukerbout, H., Djellit, H., Bougchiche, S., Bendali, M., & Bouabdallah, H. (2017). Structural architecture of the hydrothermal system from geophysical data in Hammam Bouhadjar area (northwest of Algeria). Pure and Applied Geophysics, 174, 1471–1488. https://doi.org/10. 1007/s00024-017-1479-0
  • Buforn, E., San de Galdeano, C., & Udias, A. (1995). Seismotectonics of the Ibero-Maghrebian region. Tectonophysics, 248, 247–261.
  • Candès, E. J., & Donoho, D. L. (1999). Ridgelets: A key to higherdimensional intermittency? The Royal Society Philosophical Transactions: Mathematical Physical and Engineering Sciences, 357, 2495–2509. https://doi.org/10.1098/rsta.1999.0444
  • Chiarabba, C., Amato, A., & Meghraoui, M. (1997). Tomographic images of the El Asnamfault zone and the evolution of a seismogenic thrust-related fold. Journal of Geophysical Research, 102, 24485–24498. https://doi.org/10.1029/97JB01778
  • Derder, M.E.M., Henry, B., Amenna, M., Bayou, B., Maouche, S., Besse, J., Abtout, A., Boukerbout, H., Bessedik, M., Bourouis, S., & Ayache, M. (2011). Tectonic evolution of the active ‘Chelif’ Basin (Northern Algeria) from paleomagnetic and magnetic fabric investigations. New Frontiers in Tectonic Research at the Midst of Plate Convergence. Intech Publisher book. Intech Publisher, pp. 3–26.
  • Derder, M. E. M., Henry, B., Maouche, S., Bayou, B., Amenna, M., Besse, J., Bessedik, M., Belhai, D., & Ayache, M. (2013). Transpressive tectonics along a major E-W crustal structure on the Algerian continental margin: Blocks rotations revealed by a paleomagnetic analysis. Tectonophysics, 593, 183–192.
  • Dewey, J. F., Helman, M. L., Turco, E., Hutton, D. H. W., & Knott, S. D. (1989). Kinematics of the western Mediterranean. In M. P. Coward, D. Dietrich, & R. G. Park (Eds.), Alpine Tectonics (pp. 265–283). Geological Society.
  • Gibert, D., & Galdeano, A. (1985). A computer program to perform transformations of gravimetric and aeromagnetic survey. Computers & Geoscience, 11, 553–588.
  • Gimeno-Vives, O., Frizon-de-Lamotte, D., Leprêtre, R., Haissen, F., Atouabat, A., & Mohn, G. (2020). The structure of the CentralEastern External Rif (Morocco); Poly-phased deformation and role of the under-thrusting of the North-West African paleo-margin. Earth-Science Reviews, 205, 103198.
  • Girardin, N., Hatzfeld, D., & Guiraud, R. (1977). La séismicité du nord de l'Algérie. Compte rendu sommaire de la société géologique de France, 2, 95–100. http://pascal-francis.inist.fr/vibad/index.php? action=getRecordDetail&idt=PASCALGEODEBRGM78200 09676.
  • Glangeaud, L. (1955). Les déformations plio-quaternaire de l’Afrique du Nord. Geologische Rundschau, 43, 181–196. https://doi.org/ 10.1007/BF01764100
  • Groupe de Recherche néotectonique de l’arc de Gibraltar. (1977). L’histoire tectonique récente (Tortonien à Quaternaire) de l’Arc de Gibraltar et des bordures de la mer d’Alboran. Bulletin de la Société Géologique de France XIX, 3, 575–614.
  • Issaadi, A., Semmane, F., Yelles-Chaouche, A., Galiana-Merino, J., & Layadi, K. (2020). A shear-wave velocity model in the city of Oued-Fodda (northern Algeria) from rayleigh wave ellipticity inversion. Applied Sciences, 10, 1717. https://doi.org/10.3390/ app10051717
  • Jacobsen, B. H. (1987). A case for upward continuation as a standard separation flter for potential-feld maps. Geophysics, 52, 1138–1148.
  • Kane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysics, 27(4), 455–462. https://doi. org/10.1190/1.1439044
  • Karnik, V. (1971). Seismicity of Europe. Studia Geophysica et Geodaetica, 15, 199–203. https://doi.org/10.1007/BF01623918
  • Lammali, K., Bezzeghoud, M., Oussadou, F., Dimitrov, D., & Benhallou, H. (1997). Postseismic deformation at El Asnam (Algeria) in the seismotectonic context of north-western Algeria. Geophysical Journal International, 129, 597–612.
  • Le Pichon, X., Bergerat, F., & Roulet, M. J. (1988). Plate kinematics and tectonic leading to Alpine belt formation: A new analysis, processes in continental lithospheric deformation. Geological Society of America, 1988, 111–131. https://doi.org/10.1130/SPE218-p111
  • Leprêtre, R., Frizon de Lamotte, D., Combier, V., Gimeno-Vives, O., Mohn, G., & Eschard, R. (2018). The Tell-Rif orogenic system (Morocco, Algeria, Tunisia) and the structural heritage of the southern Tethys margin. BSGF Earth Sciences Bulletin, 189, 10.
  • Longman, I. M. (1959). Formulas for computing the tidal accelerations due to the moon and the sun. Journal of Geophysical Research, 64(12), 2351–2355. https://doi.org/10.1029/JZ064i012p02351
  • Mania, J., & Djeda, F. (1990). Hydrogéologie de la plaine alluviale du haut Chelif de la région de Khemis-Miliana (Algérie). Bulletin de la Société Géologique de France, 3, 505–513.
  • Marqardt, D. W. (1963). An algorithm for least squares estimation of non-linear parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431–441.
  • Marrone, S., Monie, P., Rossetti, F., Lucci, F., Theye, T., Bouybaouene, M. L., & Zaghloul, M. N. (2021). The pressure-temperature-timedeformation history of the Beni Mzala unit (Upper Sebtides, Rif belt, Morocco): Refning the Alpine tectono-metamorphic evolution of the Alboran Domain of the western Mediterranean. Journal of Metamorphic Geology, 39, 591–615.
  • Meghraoui, M. (1982). Etude néotectonique de la région Nord-Ouest d'El Asnam: Relation avec le séisme du 10 octobre 1980. Thèse Doct. 3ème cycle, Université de Paris VII, France.
  • Meghraoui, M. (1988). Géologie des zones sismiques du nord de l’Algérie (paléosismicité, tectonique active et synthèse sismotectonique).Thèse Doct. Es. Sci. Université de Paris Sud, France.
  • Meghraoui, M., Cisternas, A., & Philip, H. (1986). Seismotectonics of the lower Chelif basin: Structural background of the El-Asnam (Algeria) earthkaque. Tectonics, 5, 809–836. https://doi.org/10. 1029/TC005i006p00809
  • Meghraoui, M., Morel, J. L., Andrieux, J., & Dahmani, M. (1996). Tectonique plio-quaternaire de la chaine tello-rifaine et de la mer d’Alboran. Une zone complexe de convergence continentcontinent. Bulletin de la Société Géologique de France, 167(1), 141–157.
  • Mickus, K. L., Aiken, C. L. V., & Kennedy, W. D. (1991). Regionalresidual gravity anomaly separation using the minimum-curvature technique. Geophysics, 56(2), 279–283. https://doi.org/10.1190/1. 1443041
  • Mikhailov, V., Galdeano, A., Diament, M., Gvishiani, A., Agayan, S., Bogoutdinov, S., Graeva, E., & Sailhac, P. (2003). Application of artifcial intelligence for Euler solutions clustering. Geophysics, 68, 168–180. https://doi.org/10.1190/1.1543204
  • Minster, J. B., & Jordan, J. H. (1978). Present-day plate motions. Journal of Geophysical Research, 83, 5331–5354.
  • Moreau, F., Gibert, D., Holschneider, M., & Saracco, G. (1997). Wavelet analysis of potential felds. Inverse Problems, 13, 165–178.
  • Moreau, F., Gibert, D., Holschneider, M., & Saracco, G. (1999). Identifcation of sources of potential felds with the continuous wavelet transform: Basic theory. Journal of Geophysical Research, 104, 5003–5013.
  • Nagy, D. (1966). The gravitational attraction of a right rectangular prism. Geophysics, 31(2), 362–371. https://doi.org/10.1190/1. 1439779
  • Negredo, A. M., Mancilla, F. D. L., Clemente, C., Morales, J., & Fullea, J. (2020). Geodynamic modeling of edge-delamination driven by subduction-transform edge propagator faults: The westernmost Mediterranean Margin (Central Betic Orogen) case study. Frontiers in Earth Science, 8, 533392. https://doi.org/10.3389/feart. 2020.533392
  • Oldham, C. W., & Sutherland, D. B. (1955). Orthogonal polynomials: Their use in estimating the regional efect. Geophysics, 20, 295–306.
  • Olivier, F. (2002). Réseau de gravimétrie absolue algérien. Bulletin des Sciences Géographiques, N09, INCT
  • Ouyed, M., Méghraoui, M., Cisternas, A., Deschamps, A., Dorel, J., Frechet, J., Gaulon, R., Hatzfeld, D., & Phillip, H. (1981). Seismotectonics of the El Asnam earthquake. Nature, 292, 26–31.
  • Perrodon, A. (1957). Etude géologique des basins néogènes sublittoraux de l’Algérie occidentale. Bulletin Service De La Carte Géologique De L’algérie, 12, 343.
  • Philip, H., & Meghraoui, M. (1983). Structural analysis and interpretation of the surface deformations of the El Asnam earthquake. Tectonics, 2, 17–49.
  • Philip, H., & Thomas, G. (1977). Détermination de la direction de raccourcissement de la phase de compression quaternaire en Oranie (Algérie). Revue de Géologie Dynamique et de Géographie Physique (2) XIX, 4, 315–324.
  • Rasmussen, R., & Pedersen, L. B. (1979). End corrections in potential feld modeling. Geophysical Prospecting, 27, 749–760.
  • Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55, 80–91.
  • Reid, A. B., & Thurston, J. B. (2014). The structural index in gravity and magnetic interpretation: Errors, uses, and abuses. Geophysics, 79, 4. https://doi.org/10.1190/geo2013-0235.1
  • Sailhac, P., Galdeano, A., Gibert, D., Moreau, F., & Delor, C. (2000). Identifcation of sources of potential felds with the continuous wavelet transform: Complex wavelets and application to aeromagnetic profles in French Guiana. Journal of Geophysical Research, 105, 19455–19475.
  • Sailhac, P., & Gibert, D. (2003). Identifcation of sources of potential felds with the continuous wavelet transform: Two-dimensional wavelets and multipolar approximations. Journal of Geophysical Research. https://doi.org/10.1029/2002JB002021
  • Sailhac, P., Gibert, D., & Boukerbout, H. (2009). The theory of the continuous wavelet transform in the interpretation of potential felds: A review. Geophysical Prospecting, 57, 517–525.
  • Serpelloni, E., Vannucci, G., Pondrelli, S., Argnani, A., Casula, G., Anzidei, M., Baldi, P., & Gasperini, P. (2007). Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophysical Journal International, 169(3), 1180–1200.
  • Talwani, M., Worzel, J. L., & Landisman, M. (1959). Rapid gravity computations for two dimensional bodies with application to the Mendocino submarine fracture zone. Journal of Geophysical Research, 64, 49–59. https://doi.org/10.1029/JZ064i001p00049
  • Tass, P., Rosenblum, M. G., Weule, J., Kurths, A., Pikovsky, A., & Volkmann, J. (1998). Detection of n:m phase locking from noisy data: Application to magnetoencephalography. Physical Review Letters, 81, 3291–3294.
  • Thomas, G. (1985). Géodynamique d'un bassin intra montagneux: le bassin du Bas Chlef occidental (Algérie) durant le Moi-PlioQuaternaire. Thèse Doctorat, Université de Pau, France.
  • Thompson, D. T. (1982). EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47, 31–37.
  • Won, I. J., & Bevis, M. (1987). Computing the gravitational magnetic anomalies due to a polygon: Algorithm and FORTRAN subroutines. Geophysics, 52, 232–238. https://doi.org/10.1190/1.14422 98
  • Yelles-Chaouche, A., Allili, T., Alili, A., Messemen, W., Beldjoudi, H., Semmane, F., Kherroubi, A., Djellit, H., Larbes, Y., Haned, S., Deramchi, A., Amrani, A., Chouiref, A., Chaoui, F., Khellaf, K., & Said, N. S. C. (2013). The new Algerian Digital Seismic Network (ADSN): Towards an earthquake early-warning system. Advances in Geosciences, 36, 31–38.
  • Yelles-Chaouche, A., Boudiaf, A., Djellit, H., & Bracene, R. (2006). La tectonique active de la région nord-algérienne. Comptes Rendus Geosciences, 338, 126–139.
  • Yielding, G., Ouyed, M., King, G. C. P., & Hatzfeld, D. (1989). Active tectonics of the Algerian Atlas Mountains—evidence from aftershocks of the 1980 El Asnam earthquake. Geophysical Journal International, 99, 761–788.