Coupling of trace elements in brachiopod shells and biotic signals from the Lower Jurassic South-Iberian Palaeomargin (SE Spain)Implications for the environmental perturbations around the early Toarcian Mass Extinction Event

  1. Baeza-Carratalá, José Francisco 1
  2. Reolid, Matías 2
  3. Giannetti, Alice 1
  4. Benavente, David 1
  5. Cuevas-González, Jaime 1
  1. 1 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

  2. 2 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

Revista:
Estudios geológicos

ISSN: 0367-0449

Año de publicación: 2021

Volumen: 77

Número: 2

Tipo: Artículo

DOI: 10.3989/EGEOL.44385.604 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Estudios geológicos

Resumen

En el Jurásico Inferior se registran diversos eventos críticos que influyeron significativamente en los ecosistemas marinos del Tethys occidental. Entre las comunidades bentónicas, en el Paleomargen Sudibérico, los braquiópodos se vieron particularmente afectados por dichos eventos. El episodio tectono-sedimentario distensivo asociado a la apertura del proto-Atlántico conllevó el colapso de las amplias plataformas someras imperantes en el Tethys hasta el Sinemuriense superior-Pliensbaquiense basal, con la consiguiente reorganización de los ecoespacios faunísticos. Posteriormente, el evento de extinción registrado en el Toarciense inferior, trajo consigo importantes alteraciones en el ciclo del carbono así como el desarrollo de condiciones anóxicas que afectaron principalmente a las comunidades bentónicas. En el dominio Subbético, la dinámica poblacional de los braquiópodos coincidió con estos importantes eventos de perturbación ambiental. Se ha analizado la impronta geoquímica registrada en conchas de braquiópodos del Subbético oriental, revelando una clara sincronía entre las oscilaciones del contenido en elementos traza, las tendencias globales en el ciclo del C y del O y la diversidad de la braquiofauna en torno a dichos eventos críticos, lo que permite validar modelos globales y regionales relacionados tanto con el evento de rifting incipiente de las plataformas someras en el Sinemuriense-Pliensbachiense, como con la crisis biótica global en torno al Toarciense inferior. En la renovación faunística verificada para el tránsito Sinemuriense-Pliensbachiense y para el evento de extinción del Toarciense, los metales traza sensibles a las condiciones redox, la concentración de REE y el contenido en Fe en las conchas de braquiópodos muestran excursiones positivas. Esta tendencia, junto a los patrones de diversidad de los braquiópodos, los bajos valores de TOC y las evidencias sedimentarias, sugieren que, en esta región, la anoxia debió representar un factor secundario como causa de estrés ambiental para la fauna bentónica. En cambio, se postula que el progresivo aumento de la temperatura jugó un papel determinante en las cuencas marginales del Tethys occidental, como se demuestra al correlacionar los principales eventos de renovación y sustitución faunística con las paleotemperaturas de las plataformas peri-ibéricas. Los cambios en la paleoproductividad, los aportes continentales y posibles contribuciones hidrotermales se relacionan asimismo con las oscilaciones de determinados elementos traza y se interpretan, por tanto, como factores coadyuvantes desencadenantes de estos bioeventos del Jurásico Inferior en el Tethys occidental.

Información de financiación

Financiadores

Referencias bibliográficas

  • Aberhan, M. (2002). Opening of the Hispanic Corridor and Early Jurassic bivalve biodiversity. Geological Society London Special Publications, 194: 127-139. https://doi.org/10.1144/GSL.SP.2002.194.01.10
  • Aberhan, M. & Fürsich, F.T. (1997). Diversity analysis of Lower Jurassic bivalves of the Andean Basin and the Pliensbachian-Toarcian mass extinction. Lethaia, 29: 181-195. https://doi.org/10.1111/j.1502-3931.1996.tb01874.x
  • Ager, D.V. (1987). Why the Rhynchonellid Brachiopods survived and the Spiriferids did not: a suggestion. Palaeontology, 30: 853-857.
  • Ait-Itto, F.Z.; Price, G.D.; Ait Addi, A.; Chafiki, D. & Mannani, I. (2017). Bulk-carbonate and belemnite carbon-isotope records across the Pliensbachian-Toarcian boundary on the northern margin of Gondwana (Issouka, Middle Atlas, Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 128-136. https://doi.org/10.1016/j.palaeo.2016.11.014
  • Akagi, T.; Hashimoto, Y.; Fu, F.F.; Tsuno, H.; Tao, H. & Nakano, T. (2004). Variation of the distribution coefficients of rare earth elements in modern coral-lattices: species and site dependencies. Geochimica and Cosmochimica Acta, 68: 2265-2273. https://doi.org/10.1016/j.gca.2003.12.014
  • Algeo, T.J. & Maynard, J.B. (2004). Trace-elements behaviour and redox facies in core shales of Upper Pensylvanian Kansas-type cyclothems. Chemical Geology, 206: 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
  • Algeo, T.J. & Lyons, T.W. (2006). Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21: PA1016. https://doi.org/10.1029/2004PA001112
  • Algeo, T.J. & Rowe, H. (2012). Paleoceanographic applications of trace metal concentrations data. Chemical Geology, 324-325: 6-18. https://doi.org/10.1016/j.chemgeo.2011.09.002
  • Alméras, Y. & Fauré, P. (1990). Histoire des brachiopodes liasiques dans la Tethys occidentale: les crises et l'écologie. Cahiers de l'Université Catholique de Lyon Sciences, 4: 1-12.
  • Alméras, Y. & Elmi, S. (1993). Palaeogeography, physiography, palaeoenvironments and brachiopod communities. Example of the Liassic brachiopods in the Western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 100: 95-108. https://doi.org/10.1016/0031-0182(93)90035-H
  • Alméras, Y.; Elmi, S.; Mouterde, R.; Ruget, C. & Rocha, R. (1988). Evolution paléogéographique du Toarcien et influence sur les peuplements. 2nd International Symposium on Jurassic Stratigraphy, 2: 687-698, Lisbon.
  • Alméras, Y.; Mouterde, R.; Benest, M.; Elmi, S. & Bassoullet, J.-P. (1996). Les brachiopodes toarciens de la rampe carbonatée de Tomar (Portugal). Documents des Laboratoires de Géologie de Lyon, 138: 125-191. https://doi.org/10.1016/S0016-6995(97)80078-2
  • Anand, P., Elderfield, H. & Conte, M.H. (2003). Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18: 1050. https://doi.org/10.1029/2002PA000846
  • Angiolini, L.; Stephenson, M.; Leng, M.J.; Jadoul, F.; Millward, D.; Aldridge, A.; Andrews, J.; Chenery, S. & Williams, G. (2012). Heterogeneity, cyclicity and diagenesis in a Mississippian brachiopod shell of palaeoequatorial Britain. Terra Nova, 24: 16-26. https://doi.org/10.1111/j.1365-3121.2011.01032.x
  • Arias, C. (2009). Extinction pattern of marine Ostracoda across the Pliensbachian Toarcian boundary in the Cordillera Ibérica, NE Spain: causes and consequences. Geobios, 42: 1-15. https://doi.org/10.1016/j.geobios.2008.09.004
  • Arias, C. (2013). The Early Toarcian (Early Jurassic) ostracod extinction events in the Iberian Range: The effect of temperature changes and prolonged exposure to low dissolved oxygen concentrations. Palaeogeography, Palaeoclimatology, Palaeoecology, 387: 40-55. https://doi.org/10.1016/j.palaeo.2013.07.004
  • Azéma, J.; Foucault, A.; Fourcade, E.; García-Hernández, M.; González-Donoso, J.M.; Linares, A.; Linares, D.; López-Garrido, A.C.; Rivas, P. & Vera, J.A. (1979). Las microfacies del Jurásico y Cretácico de las Zonas Externas de las Cordilleras Béticas. Publicaciones Universidad Granada, 83 pp.
  • Baeza-Carratalá, J.F. (2011). New Early Jurassic brachiopods from the Western Tethys (Eastern Subbetic, Spain) and their systematic and paleobiogeographic affinities. Geobios, 44: 345-360. https://doi.org/10.1016/j.geobios.2010.09.003
  • Baeza-Carratalá, J.F. (2013). Diversity patterns of Early Jurassic brachiopod assemblages from the westernmost Tethys (Eastern Subbetic). Palaeogeography, Palaeoclimatology, Palaeoecology, 381-382: 76-91. https://doi.org/10.1016/j.palaeo.2013.04.017
  • Baeza-Carratalá, J.F. & García Joral, F. (2012). Multicostate zeillerids (Brachiopoda, Terebratulida) from the Lower Jurassic of the Eastern Subbetic (SE Spain) and their use in correlation and paleobiogeography. Geologica Acta, 10: 1-12.
  • Baeza-Carratalá, J.F. & García Joral, F. (2020). Linking Western Tethyan Rhynchonellide morphogroups to the key post-Palaeozoic extinction and turnover events. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: art. 09791. https://doi.org/10.1016/j.palaeo.2020.109791
  • Baeza-Carratalá, J.F.; García Joral, F. & Tent-Manclús, J.E. (2011). Biostratigraphy and palaeobiogeographic affinities of the Jurassic brachiopod assemblages from Sierra Espuña (Maláguide Complex, Internal Betic Zones, Spain). Journal of Iberian Geology, 37: 137-151. https://doi.org/10.5209/rev_JIGE.2011.v37.n2.3
  • Baeza-Carratalá, J.F.; Giannetti, A.; Tent-Manclús, J.E. & García Joral, F. (2014). Evaluating taphonomic bias in a storm-disturbed carbonate platform. Effects of compositional and environmental factors in Lower Jurassic brachiopod accumulations (Eastern Subbetic basin, Spain). Palaios, 29: 55-73. https://doi.org/10.2110/palo.2013.041
  • Baeza-Carratalá, J.F.; García Joral, F.; Giannetti, A. & Tent-Manclús, J.E. (2015). Evolution of the last koninckinids (Athyridida, Koninckinidae), a precursor signal of the Early Toarcian mass extinction event in the Western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 429: 41-56. https://doi.org/10.1016/j.palaeo.2015.04.004
  • Baeza-Carratalá, J.F.; García Joral, F. & Tent-Manclús, J.E. (2016a). Brachiopod faunal exchange through an epioceanic-epicontinental transitional area from the Early Jurassic South Iberian platform system. Geobios, 49: 243-255. https://doi.org/10.1016/j.geobios.2016.05.005
  • Baeza-Carratalá, J.F.; Manceñido, M.O. & García Joral, F. (2016b). Cisnerospira (Brachiopoda, Spiriferinida), an atypical Early Jurassic spire bearer from the Subbetic Zone (SE Spain) and its significance. Journal of Paleontology, 90: 1081-1099. https://doi.org/10.1017/jpa.2016.109
  • Baeza-Carratalá, J.F.; García Joral, F. & Tent-Manclús, J.E. (2016c). Lower Jurassic brachiopods from the Ibero-Levantine sector (Iberian range): faunal turnovers and critical bioevents. Journal of Iberian Geology, 42: 355-369. https://doi.org/10.5209/JIGE.54666
  • Baeza-Carratalá, J.F.; Reolid, M. & García Joral, F. (2017). New deep-water brachiopod resilient assemblage from the South-Iberian Palaeomargin (Western Tethys) and its significance for the brachiopod adaptive strategies around the Early Toarcian Mass Extinction Event. Bulletin of Geosciences, 92: 233-256. https://doi.org/10.3140/bull.geosci.1631
  • Baeza-Carratalá, J.F.; García Joral, F.; Goy, A. & Tent-Manclús, J.E. (2018a). Arab-Madagascan brachiopod dispersal along the north-Gondwana paleomargin towards the western Tethys Ocean during the early Toarcian (Jurassic). Palaeogeography, Palaeoclimatology, Palaeoecology, 490: 256-268. https://doi.org/10.1016/j.palaeo.2017.11.004
  • Baeza-Carratalá, J.F.; Dulai, A. & Sandoval, J. (2018b). First evidence of brachiopod diversification after the end-Triassic extinction from the pre-Pliensbachian Internal Subbetic platform (South-Iberian Paleomargin). Geobios 51: 367-384. https://doi.org/10.1016/j.geobios.2018.08.010
  • Baghli, H.; Mattioli, E.; Spangenberg, J.E.; Bensalah, M.; Arnaud-Godet, F.; Pittet, B. & Suan, G. (2020). Early Jurassic climatic trends in the south-Tethyan margin. Gondwana Research, 77: 67-81. https://doi.org/10.1016/j.gr.2019.06.016
  • Baroni, I.R.; Pohl, A.; van Helmond, N.A.G.M.; Papadomanolaki, N.M.; Coe, A.L.; Cohen, A.S.; van de Schootbrugge, B.; Donnadieu, Y. & Slomp, C.P. (2018). Ocean circulation in the Toarcian (Early Jurassic): A key control on deoxygenation and carbon burial on the European Shelf. Paleoceanography and Paleoclimatology,
  • Bassoullet, J.P. & Baudin, F. (1994). The Early Toarcian: a period of crisis in basins and carbonate platforms from Northwestern Europe and Tethys. Geobios, 27 (Sup. 3): 645-654. https://doi.org/10.1016/S0016-6995(94)80227-0
  • Bates, N.R. & Brand, U. (1991). Environmental and physiological influences on isotopic and elemental compositions of brachiopod shell calcite - Implications for the isotopic evolution of Paleozoic oceans. Chemical Geology, 94: 67-78. https://doi.org/10.1016/S0009-2541(10)80018-X
  • Benito, M.I. & Reolid, M. (2012). Belemnite taphonomy (Upper Jurassic, Western Tethys) part II: Fossil-diagenetic analysis including combined petrographic and geochemical techniques. Palaeogeography, Palaeoclimatology, Palaeoecology, 358-360: 89-108. https://doi.org/10.1016/j.palaeo.2012.06.035
  • Bernoulli, D. & Jenkyns, H.C. (1974). Alpine, Mediterranean, and Central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In: Modern and Ancient Geosynclinal Sedimentation (Dott, H.R. & Shaver, R.H., Eds.), SEPM Special Publications, 19: 129-160. https://doi.org/10.2110/pec.74.19.0129
  • Blanchard, R.L. & Oakes, D. (1965). Relationships between uranium and radium in coastal marine shells and their environments. Journal of Geophisical Research, 70: 2911-2921. https://doi.org/10.1029/JZ070i012p02911
  • Bodin, S.; Mattioli, E.; Frölich, S.; Marshall, J.D.; Boutib, L.; Lahsini, S. & Redfern, J. (2010). Toarcian carbon isotope shifts and nutrient changes from the Northern margin of Gondwana (High Atlas, Morocco, Jurassic): palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 297: 377-390. https://doi.org/10.1016/j.palaeo.2010.08.018
  • Böttcher, M.E. & Dietzel, M. (2010). Metal-ion partitioning during low-temperature precipitation and dissolution of anhydrous carbonates and sulphates. European Mineralogical Union Notes in Mineralogy, 10: 139-187. https://doi.org/10.1180/EMU-notes.10.4
  • Bougeault, C.; Pellenard, P.; Deconinck, J.F.; Hesselbo, S.P.; Dommergues, J.L.; Bruneau, L.; Cocquerez, T.; Laffont, R.; Huret, E. & Thibault, N. (2017). Climatic and palaeoceanographic changes during the Pliensbachian (Early Jurassic) inferred from clay mineralogy and stable isotope (C-O) geochemistry (NW Europe). Global and Planetary Change, 149: 139-152. https://doi.org/10.1016/j.gloplacha.2017.01.005
  • Boyle, E.A. (1981). Cadmium, zinc, copper, and barium in foraminifera tests. Earth Planetary Sciences Lettters, 53: 11-35. https://doi.org/10.1016/0012-821X(81)90022-4
  • Braga, J.C. (1983). Ammonites del Domerense de la zona Subbética (Cordilleras Béticas, S. de España). PhD Thesis Univ. Granada, 410 pp.
  • Braga, J.; Comas, M.C.; Delgado, F.; García-Hernández, M.; Jiménez, A.P,; Linares, A.; Rivas, P. & Vera, J.A. (1981). The Liassic Rosso Ammonitico facies in the Subbetic Zone (Spain). Genetic considerations. In: Rosso Ammonitico Symposium Proceedings (Farinacci, A. & Elmi, S., Eds., Tecnoscienza, Rome, pp. 61-76.
  • Brand, U.; Logan, L.; Hiller, N. & Richardson, J. (2003). Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography. Chemical Geology, 198: 305-334. https://doi.org/10.1016/S0009-2541(03)00032-9
  • Brand, U.; Azmy, K.; Bitner, M.A.; Logan, A.; Zuschin, M.; Came, R. & Ruggiero, E. (2013). Oxygen isotopes and MgCO3 in brachiopod calcite and a new paleotemperature equation. Chemical Geology, 359: 23-31. https://doi.org/10.1016/j.chemgeo.2013.09.014
  • Brazier, J.M.; Suan, G.; Tacail, T.; Laurent, S.; Martin, J.E.; Mattioli, E. & Balter, V. (2015). Calcium isotope evidence for dramatic increase of continental weathering during the Toarcian oceanic anoxic event (Early Jurassic). Earth Planetary Sciences Lettters, 411: 164-176. https://doi.org/10.1016/j.epsl.2014.11.028
  • Bruland, K.W. (1980). Oceanographic distribution of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planetary Sciences Lettters, 47: 176-198. https://doi.org/10.1016/0012-821X(80)90035-7
  • Bruland, K.W.; Donat, J.R. & Hutchins, D.A. (1991). Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36: 1555-1577. https://doi.org/10.4319/lo.1991.36.8.1555
  • Bucefalo Palliani, R.; Mattioli, E. & Riding, J.B. (2002). The response of marine phytoplankton and sedimentary organic matter to the Early Toarcian (Lower Jurassic) oceanic anoxic event in northern England. Marine Micropaleontology, 46: 223-245. https://doi.org/10.1016/S0377-8398(02)00064-6
  • Buesing, N. & Carison, S.J. (1992). Geochemical investigation of growth in selected Recent articulate brachiopods. Lethaia, 25: 331-345. https://doi.org/10.1111/j.1502-3931.1992.tb01402.x
  • Calvert, S.E. (1990). Geochemistry and the origin of sapropel in the Black Sea. In: Facets of Modern Biogeochemistry (Ittekkot, V; Kempe, S., Michaelis, W. & Spitzy, A., Eds.), Berlin, Springer, 326-352. https://doi.org/10.1007/978-3-642-73978-1_26
  • Calvert, S.E. & Pedersen, T.F. (1993). Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113: 67-88. https://doi.org/10.1016/0025-3227(93)90150-T
  • Caruthers, A.H.; Smith, P.L. & Gröcke, D.R. (2013). The Pliensbachian-Toarcian (Early Jurassic) extinction, a global multi-phased event. Palaeogeography, Palaeoclimatology, Palaeoecology, 386: 104-118. https://doi.org/10.1016/j.palaeo.2013.05.010
  • Cheng, L.; Fenter, P.; Sturchio, N.C.; Zhong, Z. & Bedzyk, M.J. (1999). X-ray standing wave study or arsenite incorporation at the calcite surface. Geochimica and Cosmochimica Acta, 63: 3153-3157. https://doi.org/10.1016/S0016-7037(99)00242-2
  • Chester, R. & Jickells, T. (2012). Marine Geochemistry. John Wiley and Sons, 411 pp. https://doi.org/10.1002/9781118349083
  • Chester, R.; Baxter, G.B.; Behairy, A.K.A.; Connor, K.; Cross, D.; Elderfield, H. & Padgham, R.C. (1977). Soil-sized eolian dust from the lower troposphere of the eastern Mediterranean Sea. Marine Geology, 24: 201- 217. https://doi.org/10.1016/0025-3227(77)90028-7
  • Clark, J.V.; Pérez-Huerta, A.; Gillikin, D.P.; Aldridge, A.E.; Reolid, M. & Endo, K. (2016). Determination of paleoseasonality of fossil brachiopods using shell spiral deviations and chemical proxies. Palaeoworld, 25: 662-674. https://doi.org/10.1016/j.palwor.2016.05.010
  • Comans, R.N.J. & Middelburg, J.J. (1987). Sorption of trace metals on calcite: applicability of the surface precipitation model. Geochimica and Cosmochimica Acta, 51: 2587-2591. https://doi.org/10.1016/0016-7037(87)90309-7
  • Comas, M.C.; Puga, E.; Bargossi, G.M.; Morten, L. & Rossi, P.L. (1986). Paleogeography, sedimentation and volcanism of the Central Subbetic Zone, Betic Cordilleras, Southeastern Spain. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 7: 385-404. https://doi.org/10.1127/njgpm/1986/1986/385
  • Comas-Rengifo, M.J.; García Joral, F. & Goy, A. (2006). Spiriferinida (Brachiopoda) del Jurásico Inferior del NE y N de España: distribución y extinción durante el evento anóxico oceánico del Toarciense Inferior. Boletín Real Sociedad Española Historia Natural (Sec. Geológica), 101: 147-157.
  • Comas-Rengifo, M.J.; Duarte, L.V.; García Joral, F. & Goy, A. (2013). Los braquiópodos del Toarciense Inferior (Jurásico) en el área de Rabaçal-Condeixa (Portugal): distribución estratigráfica y paleobiogeografía. Comunicaçoes Geológicas, 100: 37-42.
  • Comas-Rengifo, M.J.; Duarte, L.V.; Félix, F.F.; García Joral, F., Goy, A. & Rocha, R.B. (2015). Latest Pliensbachian-Early Toarcian brachiopod assemblages from the Peniche section (Portugal) and their correlation. Episodes, 38: 2-8. https://doi.org/10.18814/epiiugs/2015/v38i1/001
  • Danise, S.; Twichett, R.J.; Little, C.T.S. & Clémence, M.E. (2013). The impact of global warming and anoxia on marine benthic community dynamics: an example from the Toarcian (Early Jurassic). PLoS ONE, 8: e56255. https://doi.org/10.1371/journal.pone.0056255 PMid:23457537 PMCid:PMC3572952
  • Danise, S.; Twichett, R.J. & Little, C.T.S. (2015). Environmental controls on Jurassic marine ecosystems during global warming. Geology, 43: 263-266. https://doi.org/10.1130/G36390.1
  • Deconinck, J.-F.; Hesselbo, S.P.; Debuisser, N.; Averbuch, O.; Baudin, F. & Bessa, J. (2003). Environmental controls on clay mineralogy of an Early Jurassic mudrock (Blue Lias Formation, southern England). International Journal of Earth Sciences, 92: 255-266. https://doi.org/10.1007/s00531-003-0318-y
  • De Lena, L.-F.; Taylor, D.; Guex, J.; Bartolini, A.; Adatte, T.; van Acken, D.; Spangenberg, J.E.; Samankassou, E.; Vernemann, T. & Schaltegger, U. (2019). The driving mechanisms of carbon cycle perturbation in the Pliensbachian (Early Jurassic). Scientific Reports, 9: art. 18430. https://doi.org/10.1038/s41598-019-54593-1 PMid:31804521 PMCid:PMC6895128
  • De Nooijer, L.J.; Reichart, G.J.; Dueñas Bohórquez, A.D.B.; Wolthers, M.; Ernst, S.R.; Mason, R.D. & Van der Zwaan, G.J. (2007). Copper incorporation in foraminiferal calcite: results from culturing experiments. Biogeosciences, 4: 9619-9991. https://doi.org/10.5194/bg-4-493-2007
  • Delance, J.H. & Laurin, B, (1983). Contròle de l'évolution des brachiopodes mésozoïques par les facteurs de l'environnement. Colloques internationaux du CNRS, 330: 91-99.
  • Delaney, M.L. & Boyle E.A. (1982). Uranium and thorium isotope concentrations in foraminiferal calcite. Earth and Planetary Science Letters, 62: 258-262. https://doi.org/10.1016/0012-821X(83)90088-2
  • Dera, G.; Neige, P.; Dommergues, J.L.; Fara, E.; Laffont, R. & Pellenard, P. (2010). High resolution dynamics of Early Jurassic marine extinctions: the case of Pliensbachian-Toarcian ammonites (Cephalopoda). Journal of the Geological Society London, 167: 21-33. https://doi.org/10.1144/0016-76492009-068
  • Doherty, P.J. (1981). The contribution of dissolved amino acids to the nutrition of articulate brachiopods. New Zealand Journal of Zoology, 8: 181-188. https://doi.org/10.1080/03014223.1981.10427960
  • Duarte, L.V. (2007). Lithostratigraphy, sequence stratigraphy and depositional setting of the Pliensbachian and Toarcian series in the Lusitanian Basin (Portugal). In: The Peniche section (Portugal), Contribution to the definition of the Toarcian GSSP (Rocha, R.B., Ed.), International Subcomission on Jurassic Stratigraphy, 17-23.
  • Dupont, C.L.; Buck, K.N.; Palenik, B. & Barbeau, K. (2010). Nickel utilization in phytoplankton assemblages from contrasting ocean regimes. Deep Sea Research I, 57: 533-566. https://doi.org/10.1016/j.dsr.2009.12.014
  • Fantasia, A.; Föllmi, K.B.; Adatte, T.; Spangenberg, J.E. & Mattioli, E. (2019a). Expression of the Toarcian Oceanic Anoxic Event: New insights from a Swiss transect. Sedimentology, 66: 262-284. https://doi.org/10.1111/sed.12527
  • Fantasia, A.; Thierry, A.; Spangenberg, J.E.; Font, E.; Duarte, L.V. & Follmi, K.B. (2019b). Global versus local processes during the Pliensbachian-Toarcian transition at the Peniche GSSP, Portugal: A multi-proxy record. Earth-Science Reviews, 198: art. 102932. https://doi.org/10.1016/j.earscirev.2019.102932
  • Fu, X.G.; Wang, M.; Zeng, S.Q.; Feng, X.L.; Wang, D. & Song, C.Y. (2017). Continental weathering and palaeoclimatic changes through the onset of the Early Toarcian oceanic anoxic event in the Qiangtang Basin, Eastern Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 487: 241-250. https://doi.org/10.1016/j.palaeo.2017.09.005
  • Fürsich, F.T. & Hurst, J.M. (1974). Environmental factors determining the distribution of brachiopods. Paleontology, 17: 879-900.
  • Gahr, M. (2005). Response of Lower Toarcian (Lower Jurassic) macrobenthos of the Iberian Peninsula to sea level changes and mass extinction. Journal of Iberian Geology, 31: 197-215.
  • García-Hernández, M.; Rivas, P. & Vera, J.A. (1979). Distribución de las calizas de llanuras de mareas en el Jurásico del Subbético y Prebético. Cuadernos de Geología Universidad Granada 10: 557-569.
  • García-Hernández, M.; López-Garrido, A.C.; Martín-Algarra, A.; Molina, J.M.; Ruiz-Ortiz, P.A. & Vera, J.A. (1989). Las discontinuidades mayores del Jurásico de las Zonas Externas de las Cordilleras Béticas: Análisis e interpretación de los ciclos sedimentarios. Cuadernos de Geología Ibérica, 13: 35-52.
  • García Joral, F. & Goy, A. (1984). Características de la fauna de braquiópodos del Toarciense Superior en el Sector Central de la Cordillera Ibérica (Noreste de España). Estudios Geológicos, 40: 55-60. https://doi.org/10.3989/egeol.84401-2650
  • García Joral, F. & Goy, A. (2000). Stratigraphic distribution of Toarcian brachiopods from the Iberian Range and its relation to depositional sequences. Georesearch Forum, 6: 381-386.
  • García Joral, F.; Gómez, J.J. & Goy, A. (2011). Mass extinction and recovery of the Early Toarcian (Early Jurassic) brachiopods linked to climate change in northern and central Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 302: 367-380. https://doi.org/10.1016/j.palaeo.2011.01.023
  • Gendron, A.; Silverberg, N.; Sundby, B. & Lebel, J. (1996). Early diagenesis of cadmium and cobalt in sediments of the Laurentian Trough. Geochimica and Cosmochimica Acta, 50: 741-747. https://doi.org/10.1016/0016-7037(86)90350-9
  • Gómez, J.J. & Goy, A. (2011). Warming-driven mass extinction in the Early Toarcian (Early Jurassic) of northern and central Spain. Correlation with other time-equivalent European sections. Palaeogeography, Palaeoclimatology, Palaeoecology, 306: 176-195. https://doi.org/10.1016/j.palaeo.2011.04.018
  • Gómez, J.J.; Comas-Rengifo, M.J. & Goy, A. (2016). Palaeoclimatic oscillations in the Pliensbachian (Early Jurassic) of the Asturian Basin (Northern Spain). Climate of the Past, 12: 1199-1214. https://doi.org/10.5194/cp-12-1199-2016
  • Greaves, M.J.; Statham, P.J. & Elderfield, H. (1994). Rare earth element mobilization from marine atmospheric dust into seawater. Marine Chemistry, 46: 255-260. https://doi.org/10.1016/0304-4203(94)90081-7
  • Grossman, E.L.; Yancey, T.E.; Jones, T.E.; Bruckschen, P.; Chuvashov, B.; Mazzullo, S.J. & Mii, H.S. (2008). Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: the isotopic record from low latitude. Palaeogeography, Palaeoclimatology, Palaeoecology, 268: 222-233. https://doi.org/10.1016/j.palaeo.2008.03.053
  • Hallam, A. (1981). A revised sea-level curve for the Early Jurassic. Journal of Geological Society, 139: 735-743. https://doi.org/10.1144/gsjgs.138.6.0735
  • Hallam, A. (1986). The Pliensbachian and Tithonian extinction events. Nature, 319: 765-768. https://doi.org/10.1038/319765a0
  • Hallam, A. (1987). Radiations and extinctions in relation to environmental change in the marine Lower Jurassic of northwest Europe. Paleobiology, 13: 152-168. https://doi.org/10.1017/S0094837300008708
  • Hallam, A. (1988). A re-evaluation of Jurassic eustasy in the light of new data and the revised Exxon curve. In: Sea-level Changes: An integrated approach (Wilgus, C.K.; Hastings, B.S.; Posamentier, H.; Van Wagoner, J.; Ross, C.A. & Kendall, C.G.S., Eds.), Society of Economic Paleontologists and Mineralogists Special Publications 42, 261-273. https://doi.org/10.2110/pec.88.01.0261
  • Hallam, A. (1996). Recovery of the marine fauna in Europe after the end-Triassic and early Toarcian mass extinctions, In: Biotic Recovery from Mass Extinction Events (Hart, M.B., Ed.), Geological Society Special Publications, 102, 231-236. https://doi.org/10.1144/GSL.SP.1996.001.01.16
  • Hamroush, H.A. & Stanley, D.J. (1990) Paleoclimatic oscillations in East Africa interpreted by analysis of trace elements in Nile delta sediments. Episodes, 13: 264-269. https://doi.org/10.18814/epiiugs/1990/v13i4/006
  • Haq, B.U. (2018). Jurassic sea-level variations: a reappraisal. GSA Today, 28: 4-10. https://doi.org/10.1130/GSATG359A.1
  • Harlou, R.; Ullmann, C.V.; Korte, C.; Lauridsen, B.W.; Schovsbo, N.H.; Surlyk, F.; Thibault, N. & Stemmerik, L. (2016). Geochemistry of Campanian-Maastrichtian brachiopods from the Rørdal-1 core (Denmark): Differential responses to environmental change and diagenesis. Chemical Geology, 442: 35-46. https://doi.org/10.1016/j.chemgeo.2016.08.039
  • Harries, P.J. & Little, C.T.S. (1999). The Early Toarcian (Early Jurassic) and the Cenomanian-Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology, Palaeoecology, 154: 39-66. https://doi.org/10.1016/S0031-0182(99)00086-3
  • Hesselbo, S.P.; Gröcke, D.R.; Jenkyns, H.C.; Bjerrum, C.J.; Farrimond, P.; Morgans-Bell, H.S. & Green, O.R. (2000). Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 406: 392-395. https://doi.org/10.1038/35019044 PMid:10935632
  • Hesselbo, S.P.; Jenkyns, H.C.; Duarte, L.V. & Oliveira L.C.V. (2007). Carbon-isotope record of the Early Jurassic (Toarcian) oceanic anoxic event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters, 253: 455-470. https://doi.org/10.1016/j.epsl.2006.11.009
  • Helz, G.R.; Bura-Nakic, E.; Mikac, N. & Ciglenecki, I. (2011). New model for molybdenum behavior in euxinic waters. Chemical Geology, 284: 323-332. https://doi.org/10.1016/j.chemgeo.2011.03.012
  • Holser, W.T. (1997). Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 132: 309-323. https://doi.org/10.1016/S0031-0182(97)00069-2
  • Immel, F.; Gaspard, D.; Guichard, N.; Cusack, M. & Marin, F. (2015). Shell proteome of rhynchonelliform brachiopods. Journal of Structural Biology, 190: 360-366. https://doi.org/10.1016/j.jsb.2015.04.001 PMid:25896726
  • Iñesta, M. (1988). Braquiópodos Liásicos del Cerro de La Cruz (La Romana, Prov. Alicante, España). Mediterránea Serie Geológica, 7: 45-64.
  • James, M.A.; Ansell, A.D.; Collins, M.J.; Curry, G.B.; Peck, L.S. & Rhodes, M.C. (1992). Biology of living brachiopods. Advances in Marine Biology, 28: 175-387. https://doi.org/10.1016/S0065-2881(08)60040-1
  • Jeandel, C.; Tachikawa, K.; Bory, A. & Dehairs, F. (2000). Biogenic barium in suspended and trapped material as a tracer of export production in tropical NE Atlantic (EUMELI sites). Marine Geochemistry, 71: 125-142. https://doi.org/10.1016/S0304-4203(00)00045-1
  • Jenkyns, H.C. (1988). The Early Toarcian (Jurassic) anoxic event: stratigraphy, sedimentary and geochemical evidence. American Journal of Science, 288: 101-151. https://doi.org/10.2475/ajs.288.2.101
  • Jenkyns, H.C. & Clayton, C.K. (1997). Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology, 44: 687-706. https://doi.org/10.1046/j.1365-3091.1997.d01-43.x
  • Kemp, D.B.; Baranyi, V.; Izumi, K. & Burgess, R.D. (2019). Organic matter variations and links to climate across the early Toarcian oceanic anoxic event (T-OAE) in Toyora area, southwest Japan). Palaeogeography, Palaeoclimatology, Palaeoecology, 530: 90-102. https://doi.org/10.1016/j.palaeo.2019.05.040
  • Keul, N.; Langer, G.; de Nooijer, L.J.; Reichart, G.J. & Bijma, J. (2013). Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentration. Geochemistry, Geophysics, Geosystems, 14: 102-111. https://doi.org/10.1029/2012GC004330
  • Klingelhoefer, F.; Labails, C.; Cosquer, E.; Rouzo, S.; Geli, L.; Aslanian, D.; Olivet, J.L.; Sahabi, M.; Nouze, H. & Unternehr, P. (2009). Crustal structure of the SW-Moroccan margin from wide-angle and reflection seismic data (the DAKHLA experiment) Part A: Wide-angle seismic models. Tectonophysics, 468: 63-82. https://doi.org/10.1016/j.tecto.2008.07.022
  • Korte, C. & Hesselbo, S.P. (2011). Shallow-marine carbon- and oxygen-isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic. Paleoceanography, 26: PA4219. https://doi.org/10.1029/2011PA002160
  • Korte, C.; Jasper, T.; Kozur, H.W. & Veizer, J. (2005). δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 224: 333-351. https://doi.org/10.1016/j.palaeo.2005.03.015
  • Korte, C.; Jones, P.J.; Brand, U.; Mertmann, D. & Veizer, J. (2008). Oxygen isotope values from high-latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 269: 1-16. https://doi.org/10.1016/j.palaeo.2008.06.012
  • Korte, C.; Hesselbo, S.P.; Ullmann, C.V.; Dietl, G.; Ruhl, M.; Schweigert, G. & Thibault, N. (2015). Jurassic climate mode governed by ocean gateway. Nature Communications, 6: 10015. https://doi.org/10.1038/ncomms10015 PMid:26658694 PMCid:PMC4682040
  • Korte, C.; Thibault, N.; Ullmann, C.V,; Clémence, M.E.; Mette, W.; Olsen, T.K.; Rizzi, M. & Ruhl, M. (2017). Brachiopod biogeochemistry and isotope stratigraphy from the Rhaetian Eiberg section in Austria: potentials and limitations. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 284: 117-138. https://doi.org/10.1127/njgpa/2017/0651
  • Lee, X.; Hu, R.; Brand, U.; Zhou, H.; Liu, X.; Yuan, H.; Yan, C. & Cheng, H. (2004). Ontogenetic trace element distribution in brachiopod shells: an indicator of original seawater chemistry. Chemical Geology, 209: 49-65. https://doi.org/10.1016/j.chemgeo.2004.04.029
  • Levinton, J. & Suchanek, T.H. (1972). The food of articulated brachiopod reconsidered. GSA Abstracts, 4: 575.
  • Little, C.T.S. (1996). The Pliensbachian-Toarcian (Lower Jurassic) extinction event. GSA Special Paper, 307: 505-512.
  • https://doi.org/10.1130/0-8137-2307-8.505
  • Little, C.T.S. & Benton, M.J. (1995). Early Jurassic mass extinction: A global long-term event. Geology, 23: 495-498. https://doi.org/10.1130/0091-7613(1995)023<0495:EJMEAG>2.3.CO;2
  • Littler, K.; Hesselbo, S.P. & Jenkyns, H.C. (2010). A carbon-isotope perturbation at the Pliensbachian-Toarcian boundary: evidence from the Lias Group, NE England. Geological Magazine, 147: 181-192. https://doi.org/10.1017/S0016756809990458
  • Macchioni, F. & Cecca, F. (2002). Biodiversity and biogeography of middle-late liassic ammonoids: implications for the Early Toarcian mass extinction. Geobios, M.S. 24: 165-175. https://doi.org/10.1016/S0016-6995(02)00057-8
  • Machel, H.G. & Burton, E. (1991). Factors governing cathodoluminescence in calcite and dolomite and their implications for studies of carbonate diagenesis. SEPM Short Course, 25: 37-58. https://doi.org/10.2110/scn.91.25.0037
  • Machel, H.G.; Mason, R.A.; Mariano, A.N. & Mucci, A. (1991). Causes and measurements of luminescence in calcite and dolomite. SEPM Short Course, 25: 9-25. https://doi.org/10.2110/scn.91.25.0009
  • Mailliot, S.; Mattioli, E.; Guex, J. & Pittet, B. (2006). The early Toarcian anoxia; a synchronous event in the Western Tethys? An approach by quantitative biochronology (Unitary Associations), applied on calcareous nannofossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 562-586. https://doi.org/10.1016/j.palaeo.2006.02.016
  • McArthur, J.M.; Kennedy, W.J.; Chen, M.; Thirwall, M.F. & Gale, A.S. (1994). Strontium isotope stratigraphy for Late Cretaceous time: Direct numerical calibration of the Sr isotope curve based on the US Western Interior. Palaeogeography, Palaeoclimatology, Palaeoecology, 108: 95-119. https://doi.org/10.1016/0031-0182(94)90024-8
  • McArthur, J.M.; Algeo, T.J.; van de Schootbrugge, B.; Li, Q. & Howarth, R.J. (2008). Basinal restriction; black shales; Re-Os dating; and the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography, 23: PA4217. https://doi.org/10.1029/2008PA001607
  • McCammon, H.M. (1981). Physiology of the brachiopod digestive system. In: Lophophorates, Notes for a Short Course (Broadhead, T.W., Ed.), University of Tennessee, Dep. Geological Sciences. Studies in Geology, 5: 17G204. https://doi.org/10.1017/S0271164800000385
  • McCammon, H.M. & Reynolds, W.A. (1976). Experimental evidence for direct nutrient assimilation by the lophophore of articulate brachiopods. Marine Biology, 34: 41-51. https://doi.org/10.1007/BF00390786
  • McManus, J.; Berelson, W.M.; Hammond, D.E. & Klinkhammer, G.P. (1999). Barium cycling in the North Pacific: implication for the utility of Ba as a paleoproductivity and paleoalkalinity proxy. Paleoceanography, 14: 62-73. https://doi.org/10.1029/1998PA900007
  • McManus, J.; Berelson, W.M.; Klinkhammer, G.P.; Hammond, D.E. & Holm, C. (2005). Authigenic uranium: relationships to oxygen penetration depth and organic carbon rain. Geochimica and Cosmochimica Acta, 69: 95-108. https://doi.org/10.1016/j.gca.2004.06.023
  • Molina, J.M.; Ruiz-Ortiz, P.A. & Vera, J.A. (1999). A review of polyphase karstification in extensional tectonic regimes: Jurassic and Cretaceous examples, Betic Cordillera, southern Spain. Sedimentary Geology, 129: 71-84. https://doi.org/10.1016/S0037-0738(99)00089-5
  • Montero-Serrano, J.C.; Föllmi, K.B.; Adatte, T.; Spangenberg, J.E.; Tribovillard, N.; Fantasia, A. & Suan, G. (2015). Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: Insight from the Posidonia Shale section in the Swiss Jura Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 429: 83-99. https://doi.org/10.1016/j.palaeo.2015.03.043
  • Moore, R.W.; Webb, R.; Tokarczyk, R. & Wever, R. (1996). Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures. Journal of Geophysical Research, 101: 20899-20908. https://doi.org/10.1029/96JC01248
  • Morel, F.M.M. & Price, N.M. (2003). The biogeochemical cycles of trace metals in the oceans. Science, 300: 944-947. https://doi.org/10.1126/science.1083545 PMid:12738853
  • Morse, J.W. & MacKenzie, F.T. (1990). Geochemistry of sedimentary carbonates. Developments in Sedimentology 48. Elsevier, Amsterdam. 707 pp.
  • Müller, T.; Price, G.D.; Bajnai, D.; Nyerges, A.; Kesjár, D.; Raucsik, B.; Varga, A.; Judik, K.; Fekete, J.; May, Z. & Pálfy, J. (2017). New multiproxy record of the Jenkyns Event (also known as the Toarcian Oceanic Anoxic Event) from the Mecsek Mountains (Hungary): Differences, duration and drivers. Sedimentology, 64: 66-86. https://doi.org/10.1111/sed.12332
  • Munsel, D.; Kramar, U.; Dissard, D.; Nehkre, G.; Berner, Z.; Bijma, J.; Reichart, G.J. & Neumann, T. (2010). Heavy metal incorporation in foraminifera calcite: results from multi-element enrichment culture experiments with Ammonia tepida. Biogeosciences, 7: 2339-2350. https://doi.org/10.5194/bg-7-2339-2010
  • Nalewajko, G.; Lee, K. & Jack, T.R. (1995). Effects of vanadium on freshwater phytoplankton photosynthesis. Water Air Soil Pollution, 81: 93-105. https://doi.org/10.1007/BF00477258
  • Nieto, L.; Ruiz-Ortiz, P.A.; Rey, J. & Benito, M.I. (2008). Strontium-isotope stratigraphy as a constraint on the age of condensed levels: examples from the Jurassic of the Subbetic Zone (southern Spain). Sedimentology, 55: 1-39.
  • O'Dogherty, L.; Sandoval, J. & Vera, J.A. (2000). Jurassic Ammonite faunal turnover tracing sea-level changes during the Jurassic (Betic Cordillera, southern Spain). Journal of the Geological Society London, 157: 723-736. https://doi.org/10.1144/jgs.157.4.723
  • Olóriz, F.; Linares, A.; Goy, A.; Sandoval, J.; Caracuel, J.E.; Rodríguez-Tovar, F.J. & Tavera, J.M. (2002). Jurassic. The Betic Cordillera and Balearic Islands. In: The Geology of Spain (Gibbons, W. & Moreno, M.T., Eds), Geological Society, London, 235-253.
  • Pálfy, J. & Smith, P.L. (2000). Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology, 28: 747-750. https://doi.org/10.1130/0091-7613(2000)28<747:SBEJEO>2.0.CO;2
  • Palmer, M.R. (1985). Rare earth elements in foraminifera tests. Earth and Planetary Science Letters, 73: 285-293. https://doi.org/10.1016/0012-821X(85)90077-9
  • Papadopoulo, P. & Rowell, D.L. (1989). The reactions of copper and zinc with calcium carbonate surfaces. Journal of Soil Science, 39: 23-36. https://doi.org/10.1111/j.1365-2389.1988.tb01191.x
  • Paquette, J. & Reeder, R.J. (1995). Relationships between surface structure, growth mechanism, and trace element incorporation in calcite. Geochimica and Cosmochimica Acta, 59: 735-749. https://doi.org/10.1016/0016-7037(95)00004-J
  • Pérez-Huerta, A.; Etayo-Cadavid, M.F.; Andrus, C.F.T.; Jeffries, T.E.; Watkins, C.; Street, S.C. & Sandweiss, D.H. (2013). El Niño Impact on mollusk biomineralization: Implications for trace element proxy reconstructions and the paleo-archeological record. Plos One,. https://doi.org/10.1371/journal.pone.0054274 PMid:23405078 PMCid:PMC3566134
  • Pérez-Huerta, A.; Aldridge, A.E.; Endo, K. & Jeffries, T.E. (2014). Brachiopod shell spiral deviations (SSD): Implications for trace element proxies. Chemical Geology, 374-375: 13-24. https://doi.org/10.1016/j.chemgeo.2014.03.002
  • Piazza, V.; Ullmann, C.V. & Aberahn, M. (2020). Ocean warming affected faunal dynamics of benthic invertebrate assemblages across the Toarcian Oceanic Anoxic Event in the Iberian Basin (Spain). Plos One. https://doi.org/10.1371/journal.pone.0242331
  • Piper, D.Z. & Dean, W.E. (2002). Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions: a history of the local hydrography and global climate, 20 ka to the present. USGS Professional Paper No. 1670. https://doi.org/10.3133/pp1670
  • Popp, B.; Anderson, T.F. & Sandberg, P.A. (1986). Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. GSA Bulletin, 97: 1262-1269. https://doi.org/10.1130/0016-7606(1986)97<1262:BAIOOI>2.0.CO;2
  • Portugal, M.; Morata, D.A.; Puga, E.; Demant, A. & Aguirre, L. (1995). Evolución geoquímica y temporal del magmatismo básico mesozoico en las Zonas Externas de las Cordilleras Béticas. Estudios Geológicos, 51: 109-118.
  • Prakash Babu, C.; Brumsack, H.J.; Schnetger, B. & Böttcher, M.E. (2002). Barium as a productivity proxy in continental margin sediments: a study from the eastern Arabian Sea. Marine Geology, 184: 189-206. https://doi.org/10.1016/S0025-3227(01)00286-9
  • Pye, K. (1987). Aeolian dust and dust deposits. 334 pp. Academic Press, San Diego.
  • Quillmann, U.; Marchitto, T.M.; Jennings, A.E.; Andrews, J.T. & Friestad, B.F. (2012). Cooling and freshening at 8.2 ka on the NW Iceland shelf recorded in paired δ18O and Mg/Ca measurements of the benthic foraminifer Cibicides lobatulus. Quaternary Research, 78: 528-539. https://doi.org/10.1016/j.yqres.2012.08.003
  • Raddatz, J. & Rüggeberg, A. (2019). Constraining past environmental changes of cold-water coral mounds with geochemical proxies in corals and foraminifera. Depositional Record. https://doi.org/10.1002/dep2.98
  • Rasmussen, C.M.Ø.; Ullmann, C.V.; Jakobsen, K.G.; Lindskog, A.; Hansen, J.; Hansen, T.; Eriksson, M.E.; Dronov, A.; Frei, R.; Korte, C.; Nielsen, A.T. & Harper, D.A.T. (2016). Onset of main Phanerozoic radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports, 6: 18884. https://doi.org/10.1038/srep18884 PMid:26733399 PMCid:PMC4702064
  • Reeder, R.J. (1996). Interactions of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochimica and Cosmochimica Acta, 60: 1543-1552. https://doi.org/10.1016/0016-7037(96)00034-8
  • Reeder, R.J.; Lamble, G.M. & Northrup, P.A. (1999). XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+ trace elements in calcite. American Mineralogist, 84: 1049-1060. https://doi.org/10.2138/am-1999-7-807
  • Regenberg, M.; Steph, S.; Nurnberg, D.; Tiedemann, R. & Garbe-Schonberg, D. (2009). Calibrating Mg/Ca ratios of multiple planktonic foraminiferal species with δ18O-calcification temperatures: paleothermometry for the upper water column. Earth and Planetary Science Letters, 278: 324-336. https://doi.org/10.1016/j.epsl.2008.12.019
  • Reolid, M. (2014). Stable isotopes on foraminifera and ostracods for interpreting incidence of the Toarcian Oceanic Anoxic Event in Westernmost Tethys: role of water stagnation and productivity. Palaeogeography, Palaeoclimatology, Palaeoecology, 395: 77-91. https://doi.org/10.1016/j.palaeo.2013.12.012
  • Reolid, M. & Abad, I. (2014). Glauconitic laminated crusts as a consequence of hydrothermal alteration of Jurassic pillow-lavas from Mediam Subbetic (Betic Cordillera, S Spain): a microbial influence case. Journal of Iberian Geology, 40: 389-408. https://doi.org/10.5209/rev_JIGE.2014.v40.n3.43080
  • Reolid, M.; Rodríguez-Tovar, F.J.; Marok, A. & Sebane, A. (2012). The Toarcian oceanic anoxic event in the Western Saharan Atlas, Algeria (North African paleomargin): role of anoxia and productivity. GSA Bulletin, 124: 1646-1664. https://doi.org/10.1130/B30585.1
  • Reolid, M.; Nieto, L.M. & Sánchez-Almazo, I.M. (2013). Caracterización geoquímica de facies pobremente oxigenadas en el Toarciense inferior (Jurásico inferior) del Subbético Externo. Revista de la Sociedad Geológica de España, 26: 69-84.
  • Reolid, M.; Mattioli, E.; Nieto, L.M. & Rodríguez-Tovar, F.J. (2014). The Early Toarcian Oceanic Anoxic Event in the External Subbetic (Southiberian Palaeomargin, Westernmost Tethys): Geochemistry, nannofossils and ichnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 411: 79-94. https://doi.org/10.1016/j.palaeo.2014.06.023
  • Reolid, M.; Rivas, P. & Rodríguez-Tovar, F.J. (2015). Toarcian ammonitico rosso facies from the South Iberian Paleomargin (Betic Cordillera, southern Spain): paleoenvironmental reconstruction. Facies, 61: 22. https://doi.org/10.1007/s10347-015-0447-3
  • Reolid, M.; Molina, J.M.; Nieto, L.M. & Rodríguez-Tovar, F.J. (2018). The Toarcian Oceanic Anoxic Event in the Southiberian Palaeomargin, SpringerBriefs in Earth Sciences, 122 pp. https://doi.org/10.1007/978-3-319-67211-3
  • Reolid, M.; Copestake, P. & Johnson, B. (2019). Foraminiferal assemblages; extinctions and appearances associated with the Early Toarcian Oceanic Anoxic Event in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, United Kingdom. Palaeogeography, Palaeoclimatology, Palaeoecology, 532: 109277. https://doi.org/10.1016/j.palaeo.2019.109277
  • Reolid, M.; Mattioli, E.; Duarte, L.V. & Marok, A. (2020). The Toarcian Oceanic Anoxic Event and the Jenkyns Event (IGCP-655 final report). Episodes, 43: 833-844. https://doi.org/10.18814/epiiugs/2020/020051
  • Reolid, M.; Mattioli, E.; Duarte, L.V. & Ruebsam, W. (2021). The Toarcian Oceanic Anoxic Event: where do we stand? Geological Society, London, Special Publications, 514, 1-12. https://doi.org/10.1144/SP514
  • Rey, J. (1998) Extensional Jurassic tectonism of an eastern Subbetic section (southern Spain). Geological Magazine 135: 685-697. https://doi.org/10.1017/S0016756898001277
  • Rita, P.; Reolid, M. & Duarte, L.V. (2016). The incidence of the Late Pliensbachian-Early Toarcian biotic crisis from ecostratigraphy of benthic foraminiferal assemblages: new insights from the Peniche reference section, Portugal. Palaeogeography, Palaeoclimatology, Palaeoecology, 454: 267-281. https://doi.org/10.1016/j.palaeo.2016.04.039
  • Rodrigues, B.; Silva, R.L.; Reolid, M.; Mendonça Filho, J.G. & Duarte, L.V. (2019). Sedimentary organic matter and δ13Ckerogen variation on the southern Iberian palaeomargin (Betic Cordillera, SE Spain) during the latest Pliensbachian-Early Toarcian. Palaeogeography, Palaeoclimatology, Palaeoecology, 534: 109342. https://doi.org/10.1016/j.palaeo.2019.109342
  • Rodríguez-Tovar, F.J. & Reolid, M. (2013). Environmental conditions during the Toarcian Oceanic Anoxic Event (T-OAE) in the westernmost Tethys: influence of the regional context on a global phenomenon. Bulletin of Geosciences, 88: 697-712. https://doi.org/10.3140/bull.geosci.1397
  • Rodríguez-Tovar, F.J & Uchman, A. (2011). Ichnofabric evidence for the lack of bottom anoxia during the lower Toarcian Oceanic Anoxic Event (T-OAE) in the Fuente de la Vidriera section, Betic Cordillera, Spain. Palaios, 25: 576-587. https://doi.org/10.2110/palo.2009.p09-153r
  • Röhl, H.J.; Schmid-Röhl, A.; Oschmann, W.; Frimmel, A. & Scwark, L. (2001). The Posidonian Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 165: 27-52. https://doi.org/10.1016/S0031-0182(01)00224-3
  • Rosales, I.; Barnolas, A.; Goy, A.; Sevillano, A.; Armendáriz, M. & López-García, J.M. (2018). Isotope records (C-O-Sr) of late Pliensbachian-early Toarcian environmental perturbations in the westernmost Tethys (Majorca Island, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 497: 168-185. https://doi.org/10.1016/j.palaeo.2018.02.016
  • Rosenberg, G.D.; Hughes, W.W. & Tkachuck, R.D. (1988). Intermediatory metabolism and shell growth in the brachiopod Terebratalia transversa. Lethaia, 21: 219-230. https://doi.org/10.1111/j.1502-3931.1988.tb02074.x
  • Ruban, D.A. (2004). Diversity dynamics of Early-Middle Jurassic brachiopods of Caucasus, and the Pliensbachian-Toarcian mass extinction. Acta Palaeontologica Polonica, 49: 275-282.
  • Ruban, D.A. (2009). Brachiopod decline preceded the Early Toarcian mass extinction in the Northern Caucasus (northern Neo-Tethys Ocean): A palaeogeographical context. Revue de Paléobiologie, 28: 85-92.
  • Ruebsam, W.; Mayer, B. & Schwark, L. (2019). Cryosphere carbon dynamics control early Toarcian global warming and sea level evolution. Global and Planetary Change, 172: 440-453. https://doi.org/10.1016/j.gloplacha.2018.11.003
  • Ruebsam, W.; Reolid, M. & Schwark, L. (2020). δ13C of terrestrial vegetation records Toarcian CO2 and climate gradients. Scientific Reports, 10: art. 117. https://doi.org/10.1038/s41598-019-56710-6 PMid:31924807 PMCid:PMC6954244
  • Ruhl, M,; Hesselbo, S.P.; Hinnov, L.; Jenkyns, H.C.; Xu, W.; Riding, J.; Srom, M.; Minisini, D.; Ullmann, C.V. & Leng, M.J. (2016). Earth and Planetary Science Letters, 455: 149-165. https://doi.org/10.1016/j.epsl.2016.08.038
  • Ruiz-Ortiz, P.A.; Bosence, D.W.J.; Rey, J.; Nieto, L.M.; Castro, J.M. & Molina, J.M. (2004). Tectonic control of facies architecture, sequence stratigraphy and drowning of a Liassic carbonate platform (Betic Cordillera, Southern Spain). Basin Research, 16: 235-257. https://doi.org/10.1111/j.1365-2117.2004.00231.x
  • Russell, A.D.; Emerson, S.; Nelson, B.K.; Erez, J. & Lea, D.W. (1994). Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochimica and Cosmochimica Acta, 58: 671-681 https://doi.org/10.1016/0016-7037(94)90497-9
  • Sahabi, M.; Aslanian, D. & Oliver, J.L. (2004). Un nouveau point de départ pour l'histoire de l'Atlantique central. Comptes Rendus Geoscience, 336: 1041-1052. https://doi.org/10.1016/j.crte.2004.03.017
  • Sandoval, J.; O'Dogherty, L. & Guex, J. (2001). Evolutionary rates of Jurassic ammonites in relation to Sea-level fluctuations. Palaios, 16: 311-335. https://doi.org/10.1669/0883-1351(2001)016<0311:EROJAI>2.0.CO;2
  • Sandoval, J.; Bill, M.; Aguado, R.; O'Dogherty, L.; Rivas, P.; Morard, A. & Guex, J. (2012). The Toarcian in the Subbetic basin (southern Spain): Bioevents (ammonite and calcareous nannofossils) and carbon-isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 342-343: 40-63. https://doi.org/10.1016/j.palaeo.2012.04.028
  • Scherer, M. & Seitz, H. (1980). Rare-earth element distribution in Holocene and Pleistocene corals and their redistribution during diagenesis. Chemical Geology, 28: 279-289. https://doi.org/10.1016/0009-2541(80)90049-2
  • Schöllhorn, I.; Adatte, T.; Van de Schootbrugge, B.; Houben, A.; Charbonnier, G.; Janssen, N. & Follmi, K.B. (2020). Climate and environmental response to the break-up of Pangea during the Early Jurassic (Hettangian-Pliensbachian), the Dorset coast (UK) revisited. Global and Planetary Change, 185: 103096. https://doi.org/10.1016/j.gloplacha.2019.103096
  • Shen, G.T. & Dunbar, R.B. (1995). Environmental controls on uranium in reef corals. Geochimica and Cosmochimica Acta, 59: 2009-2024. https://doi.org/10.1016/0016-7037(95)00123-9
  • Sholkovitz, E. & Shen, G.T. (1995). The incorporation of rare elements in modern coral. Geochimica and Cosmochimica Acta, 59: 2749-2756. https://doi.org/10.1016/0016-7037(95)00170-5
  • Simon, E.; Motchurova-Dekova, N. & Mottequin B. (2018). A reappraisal of the genus Tethyrhynchia Logan, 1994 (Rhynchonellida, Brachiopoda): a conflict between phylogenies obtained from morphological characters and molecular data. Zootaxa, 4471: 535-555. https://doi.org/10.11646/zootaxa.4471.3.6 PMid:30313395
  • Simonet Roda, M.; Zieglerb, A.; Griesshabera, E.; Yina, X.; Ruppb, U.; Greinera, M.; Henkelc, D.; Häussermannd, V.; Eisenhauerc, A.; Laudienf, J. & Schmahla, W.W. (2019). Terebratulide brachiopod shell biomineralization by mantle epithelial cells. Journal of Structural Biology, 207: 136-157. https://doi.org/10.1016/j.jsb.2019.05.002 PMid:31071428
  • Smrzka, D.; Zwicker, J.; Bach, W.; Himmler, T.; Chen, D. & Peckmann, J. (2019). The behaviour of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review. Facies, 65: 41. https://doi.org/10.1007/s10347-019-0581-4
  • Stanton Jr., R.J. & Nelson, P.C. (1980). Reconstruction of the trophic web in paleontology: Community structure in the Stone City Formation (Middle Eocene, Texas). Journal of Paleontology, 54: 118-135.
  • Steele-Petrovic, H.M. (1979). The physiological differences between articulate brachiopods and filter feeding bivalves as a factor in the evolution of marine level bottom communities. Palaeontology, 22: 101-134.
  • Stipp, S.L. & Hochella, M.F.J. (1991). Structure and bionding envinronments at the calcite surface observed with X-ray photoelectron spectroscopy (XPS) and low energy diffraction (LEED). Geochimica and Cosmochimica Acta, 55: 1723-1736. https://doi.org/10.1016/0016-7037(91)90142-R
  • Storm, M.S.; Hesselbo, S.P.; Jenkyns, H.C.; Ruhl, M.; Ullmann, C.V.; Xu, W.; Leng, M.; Riding, J. & Gorbanenko, O. (2020). Orbital pacing and secular evolution of the Early Jurassic carbon cycle. PNAS. https://doi.org/10.1073/pnas.1912094117
  • Suan, G.; Pittet, B.; Bour, I.; Mattioli, E.; Duarte, L.V. & Mailliot, S. (2008). Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: consequence for its possible causes. Earth and Planetary Science Letters, 267: 666-679. https://doi.org/10.1016/j.epsl.2007.12.017
  • Suan, G.; Mattioli, E.; Pittet, B.; Lécuyer, C.; Suchéras-Marx, B.; Duarte, L.V.; Philippe, M.; Reggiani, L. & Martineau, F. (2010). Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth and Planetary Science Letters, 290: 448-458. https://doi.org/10.1016/j.epsl.2009.12.047
  • Suchanek, T.H. & Levinton, J. (1974). Articulate brachiopod food. Journal of Paleontology, 48: 1-5.
  • Swart, P.K. & Hubbard, J.A.E.B. (1982). Uranium in scleractinian corals. Coral Reefs 1: 13-19. https://doi.org/10.1007/BF00286535
  • Tent-Manclús, J.E. (2006). Estructura y estratigrafía de las sierras de Crevillente, Abanilla y Algayat: su relación con la Falla de Crevillente. PhD Thesis, Universidad de Alicante, 970 pp., http://hdl.handle.net/10045/10414.
  • Tesoriero, A.J. & Pankow, J.F. (1996). Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochimica and Cosmochimica Acta, 60: 1053-1063. https://doi.org/10.1016/0016-7037(95)00449-1
  • Thébault, J.; Chauvaud, L.; L'Helguen, S.; Clavier, J.; Barats, A.; Jacquet, S.; Pécheyran, C. & Amoroux, D. (2009). Barium and molydenum records in bivalve shells: Geochemical proxies for phytoplankton dynamics in coastal environments? Limnology and Oceanography, 54: 1002-1014. https://doi.org/10.4319/lo.2009.54.3.1002
  • Them, T.R.; Gill, B.C.; Selby, D.; Grocke, D.R.; Friedman, R.M. & Owens, J.D. (2017). Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event. Scientific Reports, 7: 5003. https://doi.org/10.1038/s41598-017-05307-y PMid:28694487 PMCid:PMC5504049
  • Thibault, N.; Ruhl, M.; Ullmann, C.V.; Korte, C.; Kemp, D.; Gröcke, D.R. & Hesselbo, S.P. (2018). The wider context of the Lower Jurassic Toarcian oceanic anoxic event in Yorkshire coastal outcrops, UK. Proceedings of the Geologists' Association, 129: 372-391. https://doi.org/10.1016/j.pgeola.2017.10.007
  • Tkachuck, R.D.; Rosenberg, G.D.; Hughes, W.W. (1989). Utilization of free amino acids by mantle tissue in the brachiopod Terebratalia transversa and the bivalve mollusc Chlamys hastata. Comparative Biochemistry and Physiology, 92B: 747-750. https://doi.org/10.1016/0305-0491(89)90261-7
  • Tribovillard, N.; Algeo, T.; Lyons, T. & Riboulleau, A. (2006). Trace metals as palaeoredox and palaeoproductivity proxies: an update. Chemical Geology, 232: 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
  • Ullmann, C.V.; Campbell, H.C.; Frei, R. & Korte, C. (2014). Geochemical signatures in Late Triassic brachiopods from New Caledonia. New Zealand Journal of Geology and Geophysics, 57: 420-431. https://doi.org/10.1080/00288306.2014.958175
  • Ullmann, C.V.; Campbell, H.C.; Frei, R. & Korte, C. (2016). Oxygen and carbon isotope and Sr/Ca signatures of high-latitude Permian to Jurassic calcite fossils from New Zealand and New Caledonia. Gondwana Research, 38: 60-73. https://doi.org/10.1016/j.gr.2015.10.010
  • Ullmann, C.V.; Boyles, R.; Duarte, L.V.; Hesselbo, S.P.; Kasemanns, S.A.; Kleins, T.; Lenton, T.M.; Piazza, V. & Aberhan, M. (2020). Warm afterglow from the Toarcian Oceanic Anoxic Event drives the success of deep-adapted brachiopods. Scientific Reports, 10: 6549. https://doi.org/10.1038/s41598-020-63487-6 PMid:32300235 PMCid:PMC7162941
  • Van Geldern, R.; Joachimnki, M.M.; Day, J.; Jansen, U.; Alvarez, F.; Yolkin, E.A. & Ma, X.P. (2006). Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 47-67. https://doi.org/10.1016/j.palaeo.2006.03.045
  • Veizer, J. (1983). Chemical diagenesis of carbonates: theory and application of trace element technique. Sedimentary Geology, 10: 3-100.
  • Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; Jasper, T.; Korte, G.; Pawellek, F.; Podlaha, O.G. & Strauss, H. (1999). Sr87/Sr86, δC13 and δO18 evolution of Phanerozoic seawater. Chemical Geology, 161: 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
  • Vera, J.A. (1988). Evolución de los sistemas de depósito en el margen ibérico de la Cordillera Bética. Revista de la Sociedad Geológica de España, 1: 373-391.
  • Vera, J.A. (1998). El Jurásico de la Cordillera Bética: Estado actual de conocimientos y problemas pendientes. Cuadernos de Geología Ibérica, 24: 17-42.
  • Vera, J.A. (2001). Evolution of the Iberian Continental Margin. Mémoires du Musée National d'Histoire Naturelle Paris, 186: 109-143.
  • Vera, J.A.; Martín-Algarra, A.; Sánchez-Gómez, M.; Fornós, J.J. & Gelabert, B. (2004). Cordillera Bética y Baleares, In: Geología de España (Vera, J.A., Ed.), SGE-IGME, 345-464.
  • Vörös, A. (1993). Jurassic microplate movements and brachiopod migrations in the western part of the Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 100: 125-145. https://doi.org/10.1016/0031-0182(93)90037-J
  • Vörös, A. (2002). Victims of the Early Toarcian anoxic event: the radiation and extinction of Jurassic Koninckinidae (Brachiopoda). Lethaia, 35: 345-357. https://doi.org/10.1080/002411602320790652
  • Vörös, A.; Kocsis, Á.T. & Pálfy, J. (2016). Demise of the last two spire-bearing brachiopod orders (Spiriferinida and Athyridida) at the Toarcian (Early Jurassic) extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 457: 233-241. https://doi.org/10.1016/j.palaeo.2016.06.022
  • Vörös, A.; Kocsis, Á.T. & Pálfy, J. (2019). Mass extinctions and clade extinctions in the history of brachiopods: brief review and a post-Paleozoic case study. Rivista Italiana di Paleontologia e Stratigrafia, 125(3): 711-724.
  • Wang, X.L.; Plnavsky, N.J.; Hull, P.M.; Tripati, A.E.; Zou, H.J.; Elder, L. & Henehan, M. (2016). Chromium isotopic composition of core-top planktonic foraminifera. Geobiology, 15: 51-64. https://doi.org/10.1111/gbi.12198 PMid:27392225
  • Weremeichnik, J.M.; Gabitov, R.I.; Thien, B.M. & Sadekov. A. (2017) The effect of growth rate on uranium partitioning between individual calcite crystals and fluid. Chemical Geology, 450: 145-153. https://doi.org/10.1016/j.chemgeo.2016.12.026
  • Wignall, P.B. & Bond, D.P.G. (2008) The end-Triassic and Early Jurassic mass extinction records in the British Isles. Proceedings of the Geologists' Association, 119: 73-84. https://doi.org/10.1016/S0016-7878(08)80259-3
  • Wignall, P.B.; Newton, R.J. & Little, C.T.S. (2005). The timing of paleoenvironmental change and cause-and-effect relationships during the Early Jurassic mass extinction in Europe. American Journal of Science, 305: 1014-1032. https://doi.org/10.2475/ajs.305.10.1014
  • Winterer E.L. & Bosselini, A. (1981) Subsidence and sedimentation on Jurassic passive continental margin, Southern Alps, Italy. AAPG Bulletin, 65: 394-421. https://doi.org/10.1306/2F9197E2-16CE-11D7-8645000102C1865D
  • Wyndham, T.; McCulloch, M.; Fallon, S. & Alibert, C. (2004). High-resolution coral records of the earth elements in coastal seawater: biogeochemical cycling and a new environmental proxy. Geochimica and Cosmochimica Acta, 68: 2067-2080. https://doi.org/10.1016/j.gca.2003.11.004
  • Zachara, J.M.; Kittrixk, J.A. & Harsh, J.B. (1988). The mechanism of Zn2+ adsorption on calcite. Geochimica and Cosmochimica Acta, 52: 2281-2291. https://doi.org/10.1016/0016-7037(88)90130-5
  • Zachara, J.M.; Cowan, C.E. & Resch, C.T. (1991). Sorption of divalent metal son calcite. Geochimica and Cosmochimica Acta, 55: 1549-1562. https://doi.org/10.1016/0016-7037(91)90127-Q
  • Zaky, A.H.; Brand, U.; Azmy, K.; Logan, A.; Hooper, R.G. & Svavarsson, J. (2016). Rare earth elements of shallow-water articulated brachiopods: A bathymetric sensor. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 178-194. https://doi.org/10.1016/j.palaeo.2016.08.021
  • Zhao, Y.; Vance, D.; Abouchami, W. & de Baar, H.J.W. (2014). Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochimica and Cosmochimica Acta, 125: 653-672. https://doi.org/10.1016/j.gca.2013.07.045