Digital 3D models of theropods for approaching body-mass distribution and volume

  1. Matías Reolid 1
  2. Francisco J. Cardenal 1
  3. Jesús Reolid 2
  1. 1 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

  2. 2 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2021

Volumen: 47

Número: 4

Páginas: 599-624

Tipo: Artículo

DOI: 10.1007/S41513-021-00172-1 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

El objetivo de este trabajo es la obtención de diversos datos morfométricos a partir de la digitalización de maquetas 3D realizadas en base a reconstrucciones cientifcamente elaboradas de especies representativas de ocho familias de terópodos. Las maquetas de PVC analizadas corresponden a los géneros Coelophysis, Dilophosaurus, Ceratosaurus, Allosaurus, Baryonyx, Carnotaurus, Giganotosaurus, y Tyrannosaurus. Los modelos digitales 3D fueron escalados teniendo en cuenta las estimaciones de tamaño publicadas por otros autores para estos taxones. El análisis 3D de estos géneros proporciona información de las variaciones en el modelo funcional de los terópodos, principalmente en cuanto a la longitud de la cabeza y el cuerpo, así como algunas características de las extremidades que permiten inferior tendencias evolutivas y de modo de vida de estos organismos. La relación de tamaños cabeza/cuerpo incrementa de acuerdo con la talla del terópodo, con los valores más bajos obtenidos para Coelophysis (0.093) y los más altos para Tyrannosaurus y Giganotosaurus (0.119 a 0.120). Los modelos digitales obtenidos también proporcionan información que no puede obtenerse solo con el studio de los huesos, aunque éstos son la base de toda reconstrucción, tales como la relación superfcie/volume (S/V). Para los especímenes estudiados, y basándonos en la fdelidad de las maquetas, la S/V varía desde 35.21 en Coelophysis a 5.55 en Tyrannosaurus. Este parámetro, estrechamente relacionado con la disipación de calor por parte del organismo, ayuda a interpretar el metabolismo de taxones extintos. Así, formas primitivas y ligeras del Jurásico inferior (ej. Coelophysis y Dilophosaurus) tuvieron cráneos pequeños y posiblemente una tasa metabólica mayor que los grandes terópodos del Cretácico (ej. Giganotosaurus y Tyrannosaurus). Este trabajo, además, presenta una técnica que, cuando es aplicada a reconstrucciones científcamente cuidadas, proporciona aproximaciones que pueden ser de utilidad en el estudio paleontológico y paleobiológico de los dinosaurios.

Referencias bibliográficas

  • Alexander, R. M. (1989). Dynamics of dinosaurs and other extinct giants (pp. 16–26). Columbia University Press.
  • Amiot, R., Bufetaut, E., Lecuyer, C., Wang, X., Boudad, L., Ding, Z., Fourel, F., Hutt, S., Martineau, F., Medeiros, M. A., Mo, J., Simon, L., Suteethorn, V., Sweetman, S., Tong, H., Zhang, F., & Zhou, Z. (2010). Oxygen isotope evidence for semi-aquatic habits among spinosaurid theropods. Geology, 38, 139–142.
  • Amiot, R., Lécuyer, C., Bufetaut, E., Escarguel, G., Fluteau, F., & Martineau, F. (2006). Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs. Earth and Planetary Science Letters, 246, 41–54
  • Anderson, J. F., Hall-Martin, A., & Russell, D. A. (1985). Long bone circumference and weight in mammals, birds and dinosaurs. Journal of Zoology (london), 207, 53–61.
  • Bakker, R. T. (1972). Anatomical and ecological evidence of endothermy in dinosaurs. Nature, 238, 81–85.
  • Bakker, R. T. (1998). Brontosaur killers: Late Jurassic allosaurids as sabre-tooth cat analogues. Gaia, 15, 145–158.
  • Bakker, R. T., & Bir, G. (2004). Dinosaur crime scene investigations: theropod behavior at Como Bluf, Wyoming, and the evolution of birdness. In P. J. Currie, E. B. Koppelhus, M. A. Shugar, & J. L. Wright (Eds.), Feathered dragons: studies on the transition from dinosaurs to birds (pp. 301–342). Indiana University Press.
  • Baron, M. G., Norman, D. B., & Barrett, P. M. (2017). A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature, 543, 501–506. https://doi.org/10.1038/nature21700
  • Barrick, R. E., & Showers, W. J. (1994). Thermophysiology of Tyrannosaurus rex: evidence from oxygen isotopes. Science, 265, 222–224.
  • Barrick, R. E., & Showers, W. J. (1999). Thermophysiology and biology of Giganotosaurus: comparison with Tyrannosaurus. Palaeontologia Electronica. https://doi.org/10.26879/99012
  • Barrick, R. E., Showers, W. J., & Fischer, A. G. (1996). Comparison of thermoregulation of four ornithischian dinosaurs and a varanid lizard from the Cretaceous Two Medicine Formation: evidence from oxygen isotopes. Palaios, 11, 295–305.
  • Basu, C., Falkingham, P. L., & Hutchinson, J. R. (2016). The extinct, giant girafd Sivatherium giganteum: Skeletal reconstruction and body mass estimation. Biology Letters, 12, 20150940.
  • Bates, K. T., Benson, R. B. J., & Falkingham, P. L. (2012). A computational analysis of locomotor anatomy and body mass evolution in Allosauroidea (Dinosauria: Theropoda). Paleobiology, 38, 486–507.
  • Bates, K. T., & Falkingham, P. L. (2012). Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics. Biological Letters, 8, 660–664.
  • Bates, K. T., Falkingham, P. L., Breithaupt, B. H., Hodgetts, D., Sellers, W. I., & Manning, P. L. (2009a). How big was ‘Big Al’? Quatifying the efect of soft tissue and osteological unknowns on mass predictions for Allosaurus (Dinosauria: Theropoda). Palaeontologia Electronica, 12, 33.
  • Bates, K. T., Manning, P. L., Hodgetts, D., & Sellers, W. I. (2009b). Estimating the mass properties of dinosaurs using laser imaging and 3D computer modelling. PLoS ONE. https://doi.org/10.1371/journal.pone.0004532
  • Benson, R. B. J. (2018). Dinosaur macroevolution and macroecology. Annual Review of Ecology, Evolution, and Systematics, 49, 379–408.
  • Benton, M. J. (2005). Vertebrate palaeontology (3rd ed., p. 455). Blackwell Publishing.
  • Bonaparte, J. F., Novas, F. E., & Coria, R. A. (1990). Carnotaurus sastrei Bonaparte, the horned, lightly built carnotaur from the middle Cretaceous of Patagonia. Contributions Science Natural History Museum of Los Angeles County, 416, 1–42.
  • Brassey, C. A. (2017). Body-mass estimation in paleontology: a review of volumetric techniques. The Paleontological Society Papers, 22, 133–156.
  • Brochu, C. A. (2003). Osteology of Tyrannosaurus rex: Insight from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. Society of Vertebrate Paleontology Memoir, 7, 1–138.
  • Brusatte, S. L., Benson, R. B. J., & Xu, X. (2010a). The evolution of large-bodied theropod dinosaurs during the Mesozoic in Asia. Journal of Iberian Geology, 36, 275–296.
  • Brusatte, S. L., Norell, M. A., Carr, T. D., Erckson, G. M., Hutchinson, J. R., Balanof, A. M., Bever, G. S., Choiniere, J. N., Makovicky, P. J., & Xu, X. (2010b). Tyrannosaur paleobiology: new research on ancient exemplar organisms. Science, 329, 1481–1485.
  • Bufetaut, E. (2007). The spinosaurid dinosaur Baryonyx (Saurischia, Theropoda) in the Early Cretaceous of Portugal. Geological Magazine, 144, 1021–1025.
  • Bufetaut, E., Martill, D., & Escuillié, F. (2004). Pterosaurs as part of a spinosaur diet. Nature, 429, 33. https://doi.org/10.1038/430033a
  • Campione, N. E., & Evans, D. C. (2012). A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology, 10, 60. https://doi.org/10.1186/1741-7007-10-60
  • Campione, N. E., & Evans, D. C. (2020). The accuracy and precision of body mass estimation in non-avian dinosaurs. Biological Review. https://doi.org/10.1111/bre.12638
  • Campione, N. E., Evans, D. C., Brown, C. M., & Carrano, M. T. (2014). (2014) Body mass estimation in non-avian bipeds using a theoretical conversion to quadruped stylopodial proportions. Methods in Ecology and Evolution, 5, 913–923.
  • Carbone, C., Turvey, S. T., & Bielby, J. (2011). Intra-guild competition and its implications for one of the biggest terrestrial predators, Tyrannosaurus rex. Proceedings of the Royal Society B, 278, 2682–2690.
  • Carpenter, K. (1998). Evidence of predatory behavior by theropod dinosaur. Gaia, 15, 135–144.
  • Carpenter, K. (2002). Forelimb biomechanics of nonavian theropod dinosaurs. Senckenbergiana Lethaea, 82, 59–76.
  • Carpenter, K. (2010). Variation in a population of Theropoda (Dinosauria): Allosaurus from the Cleveland-Lloyd Quarry (Upper Jurassic), Utah, USA. Paleontological Research, 14, 250–259.
  • Carpenter, K., Sanders, F., McWhinney, L. A., & Wood, L. (2005). Evidence for predator-prey relationships: Examples for Allosaurus and Stegosaurus. In K. Carpenter (Ed.), The Carnivorous Dinosaurs (pp. 325–350). Indiana University Press.
  • Carr, T. D., & Williamson, T. E. (2004). Diversity of late Maastrichtian Tyrannosauridae (Dinosauria: Theropoda) from western North America. Zoological Journal of the Linnean Society, 142, 479–523.
  • Cerroni, M. A., Canale, J. I., & Novas, F. E. (2020). The skull of Carnotaurus sastrei Bonaparte 1985 revisited: Insights from craniofacial bones, palate and lower jaw. Historical Biology. https://doi.org/10.1080/08912963.2020.1802445
  • Charig, A. J., & Milner, A. C. (1986). Baryonyx, a remarkable new theropod dinosaur. Nature, 324, 359–361.
  • Charig, A. J., & Milner, A. C. (1997). Baryonyx walkeri, a fsh-eating dinosaur from the Wealden of Surrey. Bulletin of the Natural History Museum of London, 53, 11–70.
  • Christiansen, P., & Fariña, R. A. (2004). Mass prediction in theropod dinosaurs. Historical Biology, 16, 85–92.
  • CloudCompare. (2021). CloudCompare (version 2.11.3). 3D point cloud and mesh processing software. Open Source Project. http://cloudcompare.org/. Accessed Apr 2021
  • Colbert, E. H. (1962). The weights of dinosaurs. American Museum Novitates, 2076, 1–16.
  • Coria, R. A., & Currie, P. J. (2002). The braincase of Giganotosaurus carolinii (Dinosauria: Theropoda) from the Upper Cretaceous of Argentina. Journal of Vertebrate Paleontology, 22, 802–811.
  • Coria, R. A., & Salgado, L. (1995). A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature, 377, 224–226.
  • Cuf, A. R., & Rayfeld, E. J. (2013). Feeding mechanics in spinosaurid theropods and extant crocodilians. PLoS ONE. https://doi.org/10.1371/journal.pone.0065295
  • Dal Sasso, C., Maganuco, S., Bufetaut, E., & Mendez, M. A. (2005). New information on the skull of the enigmatic theropod Spinosaurus, with remarks on its size and afnities. Journal of Vertebrate Paleontology, 25, 888–896.
  • De Palma, R. A., Burnham, D. A., Martin, L. D., Rothschild, B. M., & Larson, P. L. (2013). Physical evidence of predatory behavior in Tyrannosaurus rex. PNAS, 110, 12560–12564.
  • Dececchi, T. A., Mloszewska, A. M., Holtz, T. R., Jr., Habib, M. B., & Larsson, H. C. E. (2020). The fast and the frugal: Divergent locomotory strategies drive limb lengthening in theropod dinosaurs. PLoS ONE. https://doi.org/10.1371/journal.pone.0223698
  • Delson, E., Terranova, C. J., Jungers, W. L., Sargis, E. J., & Jablonski, N. G. (2000). Body mass in Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa. Anthrophological Papers of the American Museum of Netural History, 83, 159.
  • Eagle, R. A., Tutken, T., Martin, T. S., Tripati, A. K., Fricke, H. C., Connely, M., Cifelli, R. L., & Eiler, J. M. (2011). Dinosaur body temperatures determined from isotopic (13C–18O) ordering in fossil biominerals. Science, 333, 443–445. https://doi.org/10.1126/science.1206196
  • Fariña, R. A., Vizcaíno, S. F., & Bargo, M. S. (1998). Body mass estimations in Lujanian (late Pleistocene-early Holocene of South America) mammal megafauna. Mastozoología Neotropical, 5, 87–108.
  • Farlow, J. O. (1990). Dynamic dinosaurs. Paleobiology, 16, 234–241.
  • Farlow, J. O., Smith, M. B., & Robinson, J. M. (1995). Body mass, bone “strength indicator”, and cursorial potential of Tyrannosaurus rex. Journal of Vertebrate Paleontology, 15, 713–725.
  • Fastovsky, D., & Weishampel, D. B. (2012). Dinosaurs: a concise natural history (2nd ed., p. 408). Cambridge University Press.
  • Ferigolo, J., & Langer, M. C. (2006). A Late Triassic dinosauriform from south Brazil and the origin of the ornithischian predentary bone. Historical Biology, 19, 1–11.
  • Foster, J. (2007) Gargantuan to Minuscule: The Morrison Menagerie, Part II. Jurassic West.In The Dinosaurs of the Morrison Formation and their world. Indiana University Press. pp. 162–242
  • Foster, J. R., & Chure, D. J. (2006). Hindlimb allometry in the Late Jurassic theropod dinosaur Allosaurus, with comments on its abundance and distribution. New Mexico Museum of Natural History and Science Bulletin, 36, 119–122.
  • Gay, R. J. (2001). An unusual adaptation in the caudal vertebrae of Coelophysis bauri (Dinosauria: Theropoda). PaleoBios, 21(2), 55.
  • Gignac, P. M., & Erickson, G. M. (2017). The biomechanics behind extreme osteophagy in Tyrannosaurus rex. Scientifc Reports. https://doi.org/10.1038/s41598-017-02161-w
  • Gillooly, J., Allen, A. P., & Charnov, E. L. (2006). Dinosaur fossils predict body temperatures. Plos Biology. https://doi.org/10.1371/journal.pbio.0040248
  • Gilmore, C. W. (1920). Osteology of the carnivorous dinosaurian in the United States Museum, with special reference to the genera Antrodemus (Allosaurus) and Ceratosaurus. Bulletin of the United States National Museum, 110, 1–159.
  • Grillo, O. N., & Delcourt, R. (2017). Allometry and body length of abelisauroid theropods: Pycnonemosaurus nevesi is the new king. Cretaceous Research, 69, 71–89.
  • Gunga, H. C., Kirsch, K., Rittweger, J., Rocker, L., Clarke, A., Albertz, J., Wiedemann, A., Mokry, S., Suthau, T., Wehr, A., Heinrich, W. D., & Schultze, H. P. (1999). Body size and body volume distribution in two sauropods from the Upper Jurassic of Tendaguru (Tanzania). Mitteilungen aus dem Museum für Naturkunde der Humboldt-Universit¨at Berlin. Geowissenschaftliche Reihe, 2, 91–102.
  • Gunga, H. C., Suthau, T., Bellmann, A., Friedrich, A., Schwanebeck, T., Stoinski, S., Trippel, T., Kirsch, K., & Hellwich, O. (2007). Body mass estimations for Plateosaurus engelhardti using laser scanning and 3D reconstruction methods. Naturwissenschaften, 94, 623–630.
  • Gunga, H. C., Suthau, T., Bellmann, A., Stoinski, S., Friedrich, A., Trippel, T., Kirsch, K., & Hellwich, O. (2008). A new body mass estimation of Brachiosaurus brancai Janensch, 1914 mounted and exhibited at the Museum of Natural History (Berlin, Germany). Fossil Record, 11, 33–38.
  • Happ, J., & Carpenter, K. (2008). An analysis of predator–prey behavior in a head-to-head encounter between Tyrannosaurus rex and Triceratops. In K. Carpenter & P. E. Larson (Eds.), Tyrannosaurus rex, the Tyrant King (Life of the Past) (pp. 355–368). Indiana University Press.
  • Henderson, D. M. (1998). Skull and tooth morphology as indicators of niche partitioning in sympatric Morrison Formation theropods. Gaia, 15, 219–226.
  • Henderson, D. M. (1999). Estimating the masses and centers of mass of extinct animals by 3-D mathematical slicing. Paleobiology, 25, 88–106.
  • Henderson, D. M. (2013). Sauropod necks: are they really for heat loss? PLoS ONE. https://doi.org/10.1371/journal.pone.0077108
  • Hendrikx, C., Hartman, S. A., & Mateus, O. (2015). An overview of non-avian theropod discoveries and classifcation. PalArch’s Journal of Vertebrate Palaeontology, 12, 1–73.
  • Hirt, M. R., Jetz, W., Rall, B. C., & Brose, U. (2017). A general scaling law reveals why the largest animals are not the fastest. Nature Ecology & Evolution, 1, 1116–1122. https://doi.org/10.1038/s41559-017-0241-4
  • Hone, D. W. E., & Watabe, M. (2010). New information on scavengeing and selective feeding behaviour of tyrannosaurids. Acta Palaeontologica Polonica, 55, 627–634.
  • Hopkins, S. S. B. (2018). Estimation of body size in fossil mammals. In D. A. Croft, D. F. Su, & S. W. Simpson (Eds.), Methods in Paleoecology: reconstructing Cenozoic terrestrial environments and ecological communities (pp. 7–22). Springer International Publishing.
  • Horner, J. R. (1994). Steak knives, beady eyes, and tiny little arms (a portrait of Tyrannosaurus as a scavenger). The Paleontological Society Special Publication, 7, 157–164. https://doi.org/10.1017/S2475262200009497
  • Horner, J. R., & Lessem, D. (1993). The complete T. rex. Simon & Schuster. ISBN 978-0-671-74185-3
  • Hurlburt, G. (1999). Comparison of body mass estimation techniques, using recent reptiles and the pelycosaur Edaphosaurus boanerges. Journal of Vertebrate Paleontology, 19, 338–350.
  • Hutchinson, J. R. (2004). Biomechanical modeling and sensitivity analysis of bipedal running ability II. Extinct Taxa. Journal of Morphology, 262, 441–461. https://doi.org/10.1002/jmor.10240
  • Hutchinson, J. R., Bates, K. T., Molnar, J., Allen, V., & Makovicky, P. J. (2011). A computational analysis of limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny, and growth. PLoS ONE. https://doi.org/10.1371/journal.pone.0026037
  • Hutchinson, J. R., & Garcia, M. (2002). Tyrannosaurus was not a fast runner. Nature, 415, 1018–1021. https://doi.org/10.1038/4151018a
  • Kane, A., Healy, K., Ruxton, G. D., & Jackson, A. L. (2016). Body size as a driver of scavenging in theropod dinosaurs. American Naturalist, 187, 709–716. https://doi.org/10.1086/686094
  • Langer, M. C., Ezcurra, M. D., Rauhut, O. W. M., Benton, M. J., Knoll, F., McPhee, B. W., Novas, F. E., Pol, D., & Brusatte, S. L. (2017). Untangling the dinosaur family tree. Nature, 551, E1–E3. https://doi.org/10.1038/nature24011
  • Lautenschlager, S. (2015). Estimating cranial musculoskeletal constraints in theropod dinosaurs. Royal Society Open Science, 2, 150495. https://doi.org/10.1098/rsos.150495
  • Lockley, M. G., & Hunt, A. P. (1994). A track of the giant theropod dinosaur Tyrannosaurus from close to the Cretaceous/Tertiary boundary, northern New Mexico. Ichnos, 3, 213–218.
  • Lovelace, D. M., Hartman, S. A., Mathewson, P. D., Linzmeier, B. J., & Porter, W. P. (2020). Modelling dragons: using linked mechanistic physiological and microclimate models to explore environmental, physiological, and morphological constraints on the early evolution of dinosaurs. PLoS ONE. https://doi.org/10.1371/journal.pone.0223872
  • Lucas, S. G. (2007). Dinosaurs Textbook (p. 280). McGraw-Hill Education.
  • Madsen, J. H. (1993). Allosaurus fragilis: A revised osteology. Utah Geological Survey Bulletin 109 (2ª ed. Edición). Utah Geological Surve
  • Madsen, J. H., & Welles, S. P. (2000) Ceratosaurus (Dinosauria, Theropoda): a revised osteology. Utah Geological Survey. pp. 1–80
  • Mallison, H. (2010). The digital Plateosaurus I: body mass, mass distribution, and posture assessed using CAD and CAE on a digitally mounted complete skeleton. Palaeontologia Electronica, 13, 26.
  • Mateus, O., Walen, A., & Antunes, M. T. (2006). The large theropod fauna of the Lourinhã Formation (Portugal) and its similarity to the Morrison Formation, with a description of a new species of Allosaurus. New Mexico Museum of Natural History and Science Bulletin, 36, 123–129.
  • Mazzetta, G. V., Christiansen, P., & Fariña, R. A. (2004). Giants and bizarres: body size of some southern South American Cretaceous dinosaurs. Historical Biology, 16, 71–83.
  • Mazzetta, G. V., Cisilino, A. P., Blanco, R. E., & Calvo, N. (2009). Cranial mechanics and functional interpretation of the horned carnivorous dinosaur Carnotaurus sastrei. Journal of Vertebrate Paleontology, 29, 822–830.
  • Mazzetta, G. V., & Fariña, R. A. (1999). Estimación de la capacidad atlética de Amargasaurus cazaui Salgado y Bonaparte, 1991, y Carnotaurus sastrei Bonaparte, 1985 (Saurischia, SauropodaTheropoda). Ameghiniana, 36, 105–106.
  • Molina-Perez, R., & Larramendi, A. (2019) Dinosaurs facts and fgures: the theropods and other dinosauriformes. Princeton University Press, 288 pp
  • Munt, M. C., Blackwell, G., Clark, J., & Foster, B. (2017). New spinosaurid dinosaur fnds from the Wessex Formation (Wealden Group, Early Cretaceous) of the Isle of Wight. Symposium of Verterbrate Palaeontology and Comparative Anatomy, 65, 1. https://doi.org/10.13140/RG.2.2.17925.86242
  • O’Connor, M. P., & Dodson, P. (1999). Biophysical constraints on the thermal ecology of dinosaurs. Paleobiology, 25, 341–368.
  • Paladino, F. V., O’Connor, M. P., & Spotila, J. R. (1990). Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs. Nature, 344, 858–860.
  • Paul, G.S. (1988) Predatory Dinosaurs of the World. Simon & Schuster. pp. 260
  • Paul, G. S. (2016). The Princeton Field Guide to Dinosaurs. Princeton University Press.
  • Pérez-Moreno, B. P., Chure, D. J., Pires, C., Marques Da Silva, C., Dos Santos, V., Dantas, P., Povoas, L., Cachao, M., & Sanz, J. L. (1999). On the presence of Allosaurus fragilis (Theropoda, Carnosauria) in the Upper Jurassic of Portugal. First evidence of an intercontinental dinosaur species. Journal of the Geological Society, 156, 449–452.
  • Persons, W. S., & Currie, P. J. (2011a). Dinosaur Speed Demon: The caudal musculature of Carnotaurus sastrei and implications for the evolution of South American abelisaurids. PLoS ONE, 6, e25763.
  • Persons, W. S., IV., & Currie, P. J. (2011b). The tail of Tyrannosaurus: Reassessing the size and locomotive importance of the M. caudofemoralis in non-avian theropods. The Anatomical Record, 294, 119–131.
  • Peterson, J. E., & Daus, K. N. (2019). Feeding traces attributable to juvenile Tyrannosaurus rex ofer insight into ontogenetic dietary trends. PeerJ. https://doi.org/10.7717/peerj.6573
  • Pittman, M., Gatesy, S. M., Upchurch, P., Goswami, A., & Hutchinson, J. R. (2013). Shake a tail feather: the evolution of the theropod tail into a stif aerodynamic surface. PLoS ONE, 8, e63115.
  • Porter, W. R., & Witmer, L. M. (2020). Vascular patterns in the head of dinosaurs: Evidence for blood vessels, sites of thermal exchange, and their role in physiological thermoregulatory strategies. Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology, 303, 1075–1103.
  • Rayfield, E. J., Norman, D. B., Horner, C. C., Horner, J. R., Smith, P. M., Thomason, J. J., & Upchurch, P. (2001). Cranial design and function in a large theropod dinosaur. Nature, 409, 1033–1037.
  • Rinehart, L. F., Lucas, S. G., & Heckert, A. B. (2001). Preliminary statistical analysis defning the juvenile, robust and gracile forms of the Triassic dinosaur Coelophysis. Journal of Vertebrate Paleontology, 2, 93A.
  • Rinehart, L. F., Lucas, S. G., Heckert, A. B., Spielmann, J. A., & Celesky, M. D. (2009). The paleobiology of Coelophysis bauri (Cope) from the Upper Triassic (Apachean) Whitaker quarry, New Mexico, with detailed analysis of a single quarry block. New Mexico Museum of Natural History & Science, 45, 1–260.
  • Sales, M. A. F., & Schultz, C. L. (2017). Spinosaur taxonomy and evolution of craniodental features: Evidence from Brazil. PLoS ONE, 12, e0187070.
  • Schwartz, H. L., & Gillette, D. D. (1994). Geology and taphonomy of the Coelophysis quarry, Upper Triassic Chinle Formation, Ghost Ranch, New Mexico. Journal of Paleontology, 68, 1118–1130.
  • Seebacher, F. (2001). A new method to calculate allometric lengthmass relationships of dinosaurs. Journal of Vertebrate Paleontology, 21, 51–60.
  • Seebacher, F. (2003). Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology, 29, 105–122.
  • Seeley, H. G. (1888). On the classifcation of the fossil animals commonly named Dinosauria. Proceedings Royal Society London, 43, 165–171.
  • Sellers, W. I., Pond, S. B., Brassey, C. A., Manning, P. L., & Bates, K. T. (2017). Investigating the running abilities of Tyrannosaurus rex using stress-constrained multibody dynamic analysis. PeerJ, 5, e3420. https://doi.org/10.7717/peerj.3420
  • Sereno, P. C., Wilson, J. A., Larsson, H. C. E., Dutheil, D. B., & Sues, H. (1994). Early Cretaceous dinosaurs from the Sahara. Science, 266, 267–271.
  • Serrano, F. J., Palmqvist, P., & sanz, J. L. . (2015). Multivariate analysis of neognath skeletal measurements: Implications for body mass estimation in Mesozoic birds. Zoological Journal of the Linnean Society, 173, 929–955.
  • Snively, E., O’Brien, H., Henderson, D. M., Mallison, H., Surring, L. A., Burns, M. E., Holtz, T. R., Russell, A. P., Witmer, L. M., Currie, P. J., Hartman, S. A., & Cottom, J. R. (2019). Lower rotational inertia and larger leg muscles indicate more rapid turns in tyrannosaurids than in other large theropods. PeerJ, 7, e6432.
  • Spotila, J. R., Lommen, P. W., Bakken, G. S., & Gates, D. M. (1973). A mathematical model for body temperatures of large reptiles: Implications for dinosaur ecology. The American Naturalist, 107, 391–404.
  • Stevens, K. A. (2006). Binocular vision in theropod dinosaurs. Journal of Vertebrate Paleontology, 26, 321–330. https://doi.org/10.1671/0272-4634(2006)26
  • Taquet, P. (1984). Une curieuse spécialisation du crâne de certains Dinosaures carnivores du Crétacé: Le museau long et étroit des Spinosauridés. Comptes Rendus De L’académie Des Sciences, 299, 217–222.
  • Therrien, F., & Henderson, D. M. (2007). My theropod is bigger than yours… or not: estimating body size from skull length in theropods. Journal of Vertebrate Paleontology, 27, 108–115.
  • Therrien, F., Henderson, D., & Ruf, C. (2005). Bite me—biomechanical models of theropod mandibles and implications for feeding behavior. In K. Carpenter (Ed.), The carnivorous dinosaurs (pp. 179–230). Indiana University Press
  • Turner, C. E., & Peterson, F. (1999). Biostratigraphy of dinosaurs in the Upper Jurassic Morrison Formation of the Western Interior, US.A. In D. D. Gillette (Ed.), Vertebrate paleontology in Utah (pp. 77–114). Utah Geological Survey Miscellaneous Publication
  • van Bijlert, P. A., van Soest, A. K., & Schulp, A. S. (2021). Natural frequency method estimating the preferred walking speed of Tyrannosaurus rex based on tail natural frequency. Royal Society Open Science, 8(4), 201441.
  • Vizcaino, S. F., Blanco, R. E., Bender, J. B., & Milne, N. (2011). Proportions and function of the limbs of glyptodonts. Lethaia, 44, 93–101.
  • Walker, M. D. (2020). How heavy is your pet dinosaur? School Science Review, 101, 45–49.
  • Welles, S. P. (1984). Dilophosaurus wetherilli (Dinosauria, Theropoda), osteology and comparisons. Palaeontographica Abteilung A, 185, 85–180.
  • Welles, S. P., & Pickering, S. (1995). An extract from: Archosauromorpha: cladistics and osteologies. A fractal scaling in dinosaurology project, p. 70
  • Wiiton, M. P. (2018). The Palaeoartist’s handbook: recreating prehistoric animals in art (p. 224). Crowood Press.
  • Xu, X., & Norell, M. A. (2005). Feather dinosaurs. Annual Review of Earth and Planetary Sciences, 33, 277–299.
  • Xu, X., Norell, M. A., Kuang, X., Wang, X., Zhao, Q., & Jia, C. (2004). Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids. Nature, 431, 680–684.
  • Yates, A. M. (2005). A new theropod dinosaur from the Early Jurassic of South Africa and its implications for the early evolution of theropods. Palaeontologia Africana, 41, 105–122.
  • Yun, C. (2019). Comments on the ecology of Jurassic theropod dinosaur Ceratosaurus (Dinosauria: Theropoda) with critical reevaluation for supposed semiaquatic lifestyle. Volumina Jurassica, 17, 111–116.