Distribuciones muestrales en poblaciones binomialesdificultades de comprensión por estudiantes de Educación Secundaria y Bachillerato.

  1. Nuria Begué 1
  2. Carmen Batanero Bernabeu 2
  3. Mª Magdalena Gea 2
  4. Danilo Díaz-Levicoy 3
  1. 1 Universidad de Zaragoza (UNIZAR)
  2. 2 Universidad de Granada
    info

    Universidad de Granada

    Granada, España

    ROR https://ror.org/04njjy449

  3. 3 Universidad Católica del Maule (UCM), Talca, Chile
Journal:
Unión: revista iberoamericana de educación matemática

ISSN: 1815-0640

Year of publication: 2019

Issue: 56

Pages: 100-108

Type: Article

More publications in: Unión: revista iberoamericana de educación matemática

Abstract

A main difficulty in the study of statistical inference is the understanding of the concept of sampling distribution. In this work, we summarize the main difficulties described in the research on the subject and analyze its comprehension by secondary and high school students. For this purpose, the mean and range of four values provided by students of three different courses to a task related to the binomial distribution are studied. The results show a reasonable understanding of the expected value, although some students show the equiprobability bias. The understanding of sampling variability is poor, but improves with age.

Bibliographic References

  • Begué, N., Batanero, C. y Gea, M.M.. (2018). Comprensión del valor esperado y variabilidad de la proporción muestral por estudiantes de educación secundaria obligatoria. Enseñanza de las Ciencias, 36(2), 63-79
  • Ben-Zvi, D., Bakker, A. y Makar, K. (2015). Learning to reason from samples. Educational Studies in Mathematics, 88(3), 291-303.
  • Burrill, G. y Biehler, R. (2011). Fundamental statistical ideas in the school curriculum and in training teachers. En C. Batanero, G. Burrill y C. Reading (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education. A Joint ICMI/IASE Study (pp. 57–69). New York: Springer.
  • Gómez, E. (2014). Evaluación y desarrollo del conocimiento matemático para enseñar la probabilidad en futuros profesores de educación primaria. Tesis Doctoral. Universidad de Granada.
  • Harradine, A., Batanero, C. y Rossman, A. (2011).Students and teachers’ knowledge of sampling and inference. En C. Batanero, G. Burrill y C. Reading (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education(pp. 235-246).Springer
  • Lecoutre, M. P. (1992). Cognitive models and problem spaces in "purely random" situations. Educational Studies in Mathematics, 23, 557-568.
  • Lipson, K. (2003). The role of the sampling distribution in understanding statistical inference. Mathematics Education Research Journal, 15(3), 270-287.
  • Makar, K. y Rubin, A. (2018). Learning about statistical inference. En D. Ben-Zvi (Ed.), International handbook of research in statistics education(pp. 261-294). Cham: Springer.
  • Saldanha. L. y Thompson, P. (2002) Conceptions of sample and their relationship to statistical inference. Educational Studies in Mathematics, 51, 257-270.
  • Shaughnessy, J. M., Ciancetta, M. y Canada, D. (2004). Types of student reasoning on sampling tasks. En M. J. Hoines y A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education(vol. 4, pp. 177-184). Bergen, Noruega: International Group for the Psychology of Mathematics Education
  • Tversky, A. y Kahneman, D. (1982). Judgments of and by representativeness. En D. Kahneman, P. Slovic y A. Tversky (Eds.), Judgement under uncertainty: Heuristics and biases (pp. 117-128). Nueva York: Cambridge University Press.
  • Well, A. D., Pollastsek, A.y Boyce, S. J. (1990). Understanding the effects of the sample size on the variability of the means. Organizational Behavior and Human Decision Processes, 47, 289-312.
  • Zacks, S. (2014). Parametric statistical inference: basic theory and modern approaches. London: Elsevier.