Optimización evolutiva de los parámetros de control de un algoritmo genético

  1. Fernández Prieto, José Ángel
Dirigida por:
  1. Juan Ramón Velasco Pérez Director/a
  2. Luis Magdalena Layos Codirector/a

Universidad de defensa: Universidad de Alcalá

Fecha de defensa: 09 de diciembre de 2009

Tribunal:
  1. Daniel Meziat Luna Presidente/a
  2. Sancho Salcedo Sanz Secretario/a
  3. Sebastián García Galán Vocal
  4. Manuel Lozano Márquez Vocal
  5. Óscar Cordón García Vocal

Tipo: Tesis

Resumen

El comportamiento de un Algoritmo Genético viene determinado, en gran medida, por los parámetros que utiliza, como son: el tamaño de la población y las probabilidades de selección, cruce y mutación. Sin embargo, no existe una regla general mediante la cual se puedan seleccionar los parámetros apropiados para cada tipo de problema. En unos casos, se utilizan los valores recomendados en la literatura, mientras que en otros, su elección representa un problema de prueba y error. Además, distintos autores argumentan que estos valores no deben ser fijos durante la ejecución del algoritmo ya que es un proceso intrínsecamente dinámico y adaptativo. En esta tesis doctoral se propone un sistema de optimización de parámetros que combina dos de las técnicas recogidas en la literatura para mejorar el comportamiento de un Algoritmo Genético: la meta-evolución y la adaptación de parámetros. Con el objeto de validar el sistema propuesto, este ha sido aplicado sobre los siguientes Algoritmos Genéticos, los cuales utilizan distintos tipos de codificación: 1.Algoritmo Genético con codificación binaria, con el objetivo de minimizar un conjunto de seis funciones representativas. 2.Algoritmo Genético con una codificación híbrida, binaria y real, de un sistema borroso-genético basado en el enfoque de Pittsburgh. 3.Algoritmo Genético con codificación real, el cual se encuentra integrado con un simulador de redes de comunicaciones, con el objeto de comprobar el funcionamiento en un sistema real: un protocolo de comunicaciones en una red. Por último, se ha comprobado el comportamiento de los distintos algoritmos al utilizar los parámetros hallados por el sistema propuesto. Los resultados se han comparado con los obtenidos por los principales métodos de adaptación de parámetros. Además, se han llevado a cabo diversos tests estadísticos para averiguar si existen diferencias significativas entre los resultados obtenidos.