Is GNSS real-time positioning a reliable option to validate erosion studies at olive grove environments?

  1. Garrido-Carretero, María S. 1
  2. Ramos-Galán, María I. 1
  3. de Lacy-Pérez de los Cobos, María C. 1
  4. Blanca-Mena, Sergio 1
  5. Gil-Cruz, Antonio J. 1
  1. 1 Universidad de Jaén. Centro de Estudios Avanzados en Ciencias de la Tierra, Energía y Medio Ambiente. Grupo de Investigación Microgeodesia Jaén (RNM-282). Campus Las Lagunillas s/n, Edif. A3, 23071 Jaén
Revista:
Spanish journal of agricultural research

ISSN: 1695-971X 2171-9292

Año de publicación: 2020

Volumen: 18

Número: 2

Tipo: Artículo

DOI: 10.5424/SJAR/2020182-15752 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Spanish journal of agricultural research

Resumen

Aim of study: Soil degradation in agricultural areas is a widespread problem. In this framework, a data validation methodology is presented, including a study of the spatial resolution of Global Navigation Satellite System (GNSS) measurements, the calculation of erosion/deposition models, and the contribution of dual frequency and low-cost single frequency GNSS receivers.Area of study: A test olive grove in SE Spain.Material and methods: The study is based on three observation campaigns, between 2016 and 2018, using different GNSS receivers and working modes. The comparison between different surveys provide the volumetric variation over the analyzed period.Main results: Considering the dual-frequency receiver, there was no statistically significant difference between the means and the variances from 1.5 m and from 4.5 m data resolution at the 0.05 significance level. In order to estimate vertical differences from successive GNSS campaigns a differential digital elevation approach was applied. Although the differences depended on the zone of the test area and they changed along the monitoring period, the erosion rate could be catalogued as very low. The dual-frequency receiver satisfied the vertical centimetric precision limits for high accurate Digital Elevation Model (DEM), making it a reliable and accurate option to validate erosion studies in small areas.Research highlights: The results have allowed the characterization of multi-annual spatial redistribution of the topsoil at local scale, being of great help to design future prevention actions for the “tillage erosion” in olive grove environments. However, more tests are needed to guarantee the feasibility of low-cost receivers.

Información de financiación

We thank to the owner of the olive grove for allowing and facilitating our work. Support provided by the Institute of Statistics and Cartography of Andalusia during this project is gratefully acknowledged.

Financiadores

Referencias bibliográficas

  • Abd Aziz S, Steward BL, Kaleita AL, Karkee M, 2012. Assessing the effects of DEM uncertainty on erosion rate estimation in an agricultural field. T ASABE 55 (3): 785-798. https://doi.org/10.13031/2013.41514
  • Álamo S, Ramos MI, Feito FR, Cañas JA, 2012. Precision techniques for improving the management of the olive groves of southern Spain. Span J Agric Res 10 (3): 583-595. https://doi.org/10.5424/sjar/2012103-361-11
  • Dabove P, Manzino AM, 2014. GPS & GLONASS mass-market receivers: positioning performances and peculiarities. Sens 14 (2): 22159-22179. https://doi.org/10.3390/s141222159
  • Euler HJ, Keenan CR, Zebhauser BE, Wübbena G, 2001. Study of a simplified approach of utilizing information from permanent reference station arrays, Proc. 14th Int. Tech. Meeting Satellite Div. U.S. Inst. Navig., Salt Lake City, Utah.
  • Garrido MS, Giménez E, Ramos MI, Gil AJ, 2013. A high spatio-temporal methodology for monitoring dunes morphology based on precise GPS-NRTK profiles: Test-case of Dune of Mónsul on the south-east Spanish coastline. Aeolian Res 8: 75-84. https://doi.org/10.1016/j.aeolia.2012.10.011
  • Garrido MS, De Lacy MC, Borque MJ, Ruiz AM, Moreno R, Gil AJ, 2019a. Low-cost GNSS receiver in RTK positioning under the standard ISO-17123-8: a feasible option in geomatics. Meas 137: 168-178. https://doi.org/10.1016/j.measurement.2019.01.045
  • Garrido MS, De Lacy MC, Ramos MI, Borque MJ, Susi M, 2019b. Assessing the accuracy of NRTK altimetric positioning for precision agriculture: test results in an olive grove environment in Southeast Spain. Precision Agric 20 (3): 461-476. https://doi.org/10.1007/s11119-018-9591-4
  • Gómez JA, Vanwalleghem T, De Hoces A, Taguas E, 2014. Hydrological and erosive response of a small catchment under olive cultivation in a vertic soil during a five-year period: Implications for sustainability. Agr Ecosyst Environ 188: 229-244. https://doi.org/10.1016/j.agee.2014.02.032
  • Guo J, Li X, Li Z, Hu L, Yang G, Zhao C, Fairbairn D, Watson D, Ge M, 2018. Multi-GNSS precise point positioning for precision agriculture. Precision Agric 19 (5): 895-911. https://doi.org/10.1007/s11119-018-9563-8
  • Guo Q, Li W, Yu H, Alvarez O, 2010. Effects of topographic variability and lidar sampling density on several DEM interpolation methods, Photogramm Eng Rem S 76 (6): 701-712. https://doi.org/10.14358/PERS.76.6.701
  • Hofmann-Wellenhof B, Lichtenegger H, Wasle E, 2008. GNSS global navigation satellite systems. Springer, Wien, NY.
  • IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, Italy.
  • Janssen V, 2009. A comparison of the VRS and MAC principles for network RTK. Proc. Int. Glob. Navig. Sat. Syst. Soc., IGNSS Symp., Australia.
  • Junta de Andalucía, 2015. Decreto 103/2015, de 10 de marzo, por el que se aprueba el Plan Director del Olivar. Boletín Oficial de la Junta de Andalucía, Consejería de Agricultura, Pesca y Desarrollo Rural [in Spanish].
  • Kabir MSN, Song MZ, Sun NS, Chung SO, Kim YJ, Noburu N, Hong SJ, 2016. Performance comparison of single and multi-GNSS receivers under agricultural felds in Korea. Eng Agric Environ Food 9: 27-35. https://doi.org/10.1016/j.eaef.2015.09.002
  • Keskin M, Sekerli YE, Kahraman S, 2017. Performance of two low-cost GPS receivers for ground speed measurement under varying speed conditions. Precis Agric 18: 264-277. https://doi.org/10.1007/s11119-016-9453-x
  • Kumhálová J, Kumhála F, Kroulík M, Matějková S, 2011. The impact of topography on soil properties and yield and the effects of weather conditions. Precis Agric 12 (6): 813-830. https://doi.org/10.1007/s11119-011-9221-x
  • Landau H, Vollath U, Chen X, 2002. Virtual reference station systems. J Glob Position Syst 1 (2): 137-143. https://doi.org/10.5081/jgps.1.2.137
  • Liu H, Kiesel J, Hörmann G, Fohrer N, 2011. Effects of DEM horizontal resolution and methods on calculating the slope length factor in gently rolling landscapes. Catena 87: 368-375. https://doi.org/10.1016/j.catena.2011.07.003
  • Odolinski R, Teunissen P, 2016. Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS-BDS RTK analysis. J Geod 90 (11): 1255-1278. https://doi.org/10.1007/s00190-016-0921-x
  • Odolinski R, Teunissen P, 2017. Low-cost, high-precision, single-frequency GPS-BDS RTK Positioning. GPS Solut 21: 1315-1330. https://doi.org/10.1007/s10291-017-0613-x
  • Páez R, Torrecillas C, Barbero I, Berrocoso M, 2017. Regional positioning services as economic and construction activity indicators: the case study of Andalusian Positioning Network (Southern Spain). Geocarto Int 32 (1): 44-58. https://doi.org/10.1080/10106049.2015.1120358
  • Pineux N, Lisein J, Swerts G, Bielders CL, Lejeune P, Colinet G, Degré A, 2017. Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed? Geomorphology 280: 122-136. https://doi.org/10.1016/j.geomorph.2016.12.003
  • Stöcker C, Eltner A, Karrasch P, 2015. Measuring gullies by synergetic application of UAV and close range photogrammetry - A case study from Andalusia, Spain. Catena 132: 1-11. https://doi.org/10.1016/j.catena.2015.04.004
  • Ramos MI, Feito FR, Gil AJ, Cubillas JJ, 2008. A study of spatial variability of soil loss with high resolution DEMs: a case study of a sloping olive orchard in southern Spain. Geoderma 148: 1-12. https://doi.org/10.1016/j.geoderma.2008.08.015
  • Taguas EV, Gómez JA, 2015. Vulnerability of olive orchards under the current CAP (Common Agricultural Policy) regulation on soil erosion: A study case in Southern Spain. Land Use Policy 42: 683-694. https://doi.org/10.1016/j.landusepol.2014.09.001
  • Tahar KN, Ahmad A, Akib WAAWM, Mohd WMNW, 2013. Unmanned aerial vehicle photogrammetric results using different real time kinematic global positioning system approaches. In: Developments in multidimensional spatial data models; Abdul Rahman A et al. (eds), pp: 123-134. Lecture Notes in Geoinformation and Cartography. Springer, Berlin/Heidelberg, Germany. https://doi.org/10.1007/978-3-642-36379-5_8
  • Takac F, Zelzer O, 2008. The relationship between Network RTK Solutions MAC, VRS, PRS, FKP and i-MAX. Proc. 21st Int Tech Meeting of the Satellite Division of the Institute of Navigation (ION GNSS), Savannah, GA, USA, pp: 348-355.
  • Teunissen PJG, 2000. Testing theory: An introduction. Delft University Press.
  • Vanwalleghem T, Infante-Amate J, González de Molina M, Soto-Fernández D, Alfonso-Gómez J, 2011. Quantifying the effect of historical soil management on soil erosion rates in Mediterranean olive orchards. Agr Ecosyst Environ 142 (3-4): 341-351. https://doi.org/10.1016/j.agee.2011.06.003
  • Wheaton JM, Brasington J, Darby SE, Sear DA, 2010. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 156: 136-156. https://doi.org/10.1002/esp.1886
  • Žížala D, Juřicová A, Zádorová T, Zelenková K, Minařík R, 2019. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. Eur J Remote Sens 52: 108-122. https://doi.org/10.1080/22797254.2018.1482524