TASS 2018The Strength of Deep Learning in Language Understanding Tasks

  1. Manuel Carlos Díaz Galiano
  2. Miguel Ángel García Cumbreras
  3. Manuel García Vega
  4. Yoan Gutiérrez
  5. Eugenio Martínez Cámara
  6. Alejandro Piad-Morffis
  7. Julio Villena Román
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2019

Número: 62

Páginas: 77-84

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

The edition of TASS in 2018 was the edition of the evolution of TASS to a competitive evaluation workshop on semantic and text understanding tasks. Consequently, TASS has enlarged the coverage of tasks, and it goes beyond sentiment analysis. Thereby, two new tasks focused on semantic relation extraction in the health domain and emotion classification in the news domain were added to the two traditional tasks of TASS, namely sentiment analysis at tweet level and aspect level. Several systems were submitted, and most of them are based on state of the art classification methods, which highlight those ones grounded in Deep Learning. As addition contribution, TASS 2018 released two new corpora, specifically the ones of the two new tasks.

Información de financiación

This work has been partially supported by a grant from the Fondo Europeo de De-sarrollo Regional (FEDER), the projects REDES (TIN2015-65136-C2-1-R, TIN2015-65136-C2-2-R), PROMETEU/2018/089 and SMART-DASCI (TIN2017-89517-P) from the Spanish Government. Eugenio Martínez Cámara was supported by the Spanish Government Programme Juan de la Cierva For-mación (FJCI-2016-28353).

Financiadores

    • TIN2015-65136-C2-1-R
    • FJCI-2016-28353

Referencias bibliográficas

  • Chiruzzo, L. and A. Rosá. 2018. RETUYTInCo at TASS 2018: Sentiment analysis in spanish variants using neural networks and svm. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1):37–46.
  • González, J.-A., L.-F. Hurtado, and F. Pla. 2018a. ELiRF-UPV en TASS 2018: Categorización emocional de noticias. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • González, J.-A., L.-F. Hurtado, and F. Pla. 2018b. ELiRF-UPV en TASS 2018: Análisis de sentimientos en twitter basado en aprendizaje profundo. In Proceedings of TASS 2018, volume 2172, pages 37–44, Sevilla, Spain. CEUR-WS.
  • Graff, M., E. S. Tellez, H. Jair Escalante, and S. Miranda-Jiménez, 2017. Semantic Genetic Programming for Sentiment Analysis, pages 43–65. Springer Int. Publishing.
  • Herrera-Planells, J. and J. Villena-Román. 2018. MeaningCloud at TASS 2018: News headlines categorization for brand safety assessment. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Landis, J. R. and G. G. Koch. 1977. The measurement of observer agreement for categorical data. biometrics, pages 159– 174.
  • López-Ubeda, P., M. C. Díaz-Galiano, M. T. Martín-Valdivia, and L. A. Urena-Lopez. 2018. SINAI en TASS 2018 Task 3. Clasificando acciones y conceptos con UMLS en MedLine. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Luque, F. M. and J. M. Pérez. 2018. Atalaya at TASS 2018: Sentiment analysis with tweet embeddings and data augmentation. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Martínez-Cámara, E., Y. Almeida-Cruz, M. C. Díaz-Galiano, S. Estévez-Velarde, M. A. García-Cumbreras, M. GarcíaVega, Y. Gutiérrez, A. Montejo-Ráez, A. Montoyo, R. Muñoz, A. Piad-Morffis, and J. Villena-Román. 2018. Overview of TASS 2018: Opinions, health and emotions. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Martínez-Cámara, E., M. C. Díaz-Galiano, M. A. García-Cumbreras, M. GarcíaVega, and J. Villena-Román. 2017. Overview of TASS 2017. In Proceedings of TASS 2017, volume 1896, Murcia, Spain. CEUR-WS.
  • Medina, S. and J. Turmo. 2018. Joint classification of key-phrases and relations in electronic health documents. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Moctezuma, D., J. Ortiz-Bejar, E. S. Tellez, S. Miranda-Jiménez, and M. Graff. 2018. INGEOTEC solution for task 4 in TASS’18 competition. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Montanés, R., R. Aznar, and R. del Hoyo. 2018. Aplicación de un modelo híbrido de aprendizaje profundo para el análisis de sentimiento en twitter. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Palatresi, J. V. and H. R. Hontoria. 2018. TASS2018: Medical knowledge discovery by combining terminology extraction techniques with machine learning classification. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Plaza del Arco, F. M., E. Martínez-Cámara, M. T. Martín Valdivia, and A. Ureña López. 2018. SINAI en TASS 2018: Inserción de conocimiento emocional externo a un clasificador lineal de emociones. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Rodríguez Barroso, N., E. Martínez-Cámara, and F. Herrera. 2018. SCI2S at TASS 2018: Emotion classification with recurrent neural networks. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Suarez-Paniagua, V., I. Segura-Bedmar, and P. Martínez. 2018. ABDA at TASS-2018 task 3: Convolutional neural networks for relation classification in spanish ehealth documents. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.
  • Zavala, R. M. R., P. Martínez, and I. SeguraBedmar. 2018. A hybrid Bi-LSTM-CRF model for knowledge recognition from ehealth documents. In Proceedings of TASS 2018, volume 2172, Sevilla, Spain. CEUR-WS.