Las energías renovables a escala urbanaaspectos determinantes y selección tecnológica

  1. Barragán Escandón, Edgar Antonio
  2. Zalamea-León, Esteban Felipe 1
  3. Terrados-Cepeda, Julio 2
  4. Parra-González, Alejandro 1
  1. 1 Universidad de Cuenca
    info

    Universidad de Cuenca

    Cuenca, Ecuador

    ROR https://ror.org/04r23zn56

  2. 2 Universidad de Jaén
    info

    Universidad de Jaén

    Jaén, España

    ROR https://ror.org/0122p5f64

Journal:
Bitácora Urbano-Territorial

ISSN: 0124-7913

Year of publication: 2019

Issue Title: Territorio, sostenibilidad y planeación.

Volume: 29

Issue: 2

Pages: 39-48

Type: Article

DOI: 10.15446/BITACORA.V29N2.65720 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Bitácora Urbano-Territorial

Abstract

Environmental deterioration including the effects of global warming will require changes in the way in which the city is conceived. Thus, the need arises for public policy and planning to include the development of energy provided from cities own resources. Given the stresses that cities place on the environment, the proposed changes must be selected so as to promote sustainability. Current technology allows a city to modify how energy is provided in response to external sources. This article presents a set of technologies that could take advantage of urban resources for energy supply. Experts from several countries were surveyed to identify technologies that will have an impact on the urban energy matrix, and to identify morphological, social, and other key aspects of selection. Solar energy, both photovoltaic and thermal, were found to elicit the greatest interest among the technologies evaluated. Besides costs, politics and regulations were identified as possible determining factors when developing energy resources within cities.

Bibliographic References

  • AGUDELO-VERA, C. M., et al. (2012). “Harvesting urban resources towards more resilient cities”. Resources, Conservation and Recycling, 64: 3-12.
  • BARLES, S. (2009). “Urban metabolism of Paris and its region”. Journal of Industrial Ecology, 13 (6): 898-913.
  • BARRAGÁN, A., ARIAS, P. D. y TERRADOS, J. (2016). “Fomento del metabolismo energético circular mediante generación eléctrica proveniente de rellenos sanitarios: estudio de caso, Cuenca, Ecuador. Promoting circular energy metabolisms through electricity generation from landfills: case study”. Ingenius, 16: 36-42.
  • BARRAGÁN, A., et al. (2018). “Electricity production using renewable resources in urban centres”. Proceedings of the Institution of Civil Engineers, 171 (1): 12-25.
  • BARRAGÁN, A., TERRADOS-CEPEDA, J. y ZALAMEA-LEÓN, E. (2017). “The role of renewable energy in the promotion of circular urban metabolism”. Sustainability, 9 (12): 2341. Consultado en: http://www.mdpi.com/2071-1050/9/12/2341
  • BYRNE, J, et al. (2015). “A solar city strategy applied to six municipalities: integrating market, finance, and policy factors for infrastructure-scale photovoltaic development in Amsterdam, London, Munich, New York, Seoul, and Tokyo”. Energy and Environment, 5: 68-88.
  • CABRERA, N., et al. (2015). “Evaluando la sustentabilidad de la densificación urbana. Indicadores para el caso de cuenca (Ecuador)”. Bitácora Urbano Territorial, 25 (2): 21-34. Consultado en: https://revistas.unal.edu.co/index.php/bitacora/article/view/49014
  • CÁRDENAS, L. y URIBE, P. (2012). “Acceso solar a las edificaciones: el eslabón pendiente en la norma urbanística chilena sobre la actividad proyectual”. Revista de Urbanismo, 26: 21-42.
  • CHEN, SH. y CHEN, B. (2015). “Urban energy consumption: different insights from energy flow analysis, input–output analysis and ecological network analysis”. Applied Energy, 138: 99-107.
  • DE SOUZA, S. N., et al. (2014). “Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment”. Waste Management & Research, 32 (10): 1015-1023.
  • DIXON, T., et al. (2014). “Urban retrofitting: identifying disruptive and sustaining technologies using performative and foresight techniques”. Technological Forecasting and Social Change, 89: 131-144.
  • ELEFTHERIADIS, I. M. y ANAGNOSTOPOULOU, E. G. (2015). “Identifying barriers in the diffusion of renewable energy sources”. Energy Policy, 80: 153-164.
  • FUJIIA, M., et al. (2015). “Assessment of the potential for developing mini/micro hydropower: a case study in Beppu City, Japan”. Journal of Hydrology: Regional Studies, 11: 107-116.
  • GREWAL, P. S. y GREWAL, P. S. (2013). “can cities become self-reliant in energy? a technological scenario analysis for Cleveland, Ohio”. Cities, 31: 404-411.
  • HABERL, H., et al. (2004). “Progress towards Sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer”. Land Use Policy, 21 (3): 199-213.
  • HAN, J., MOL, A. P. J. y LU, Y. (2010). “Solar water heaters in China: a new day dawning”. Energy Policy, 38: 383-391.
  • HAUGHTON, G. (1997). “Developing sustainable urban development models”. Cities, 14 (4): 189-195.
  • HUANG, Sh. L. y CHEN, Ch. W. (2005). “Theory of urban energetics and mechanisms of urban development”. Ecological Modelling, 189 (1-2): 49-71.
  • HUANG, Sh. L. y HSU, W. L. (2003). “Materials flow analysis and emergy evaluation of Taipei’s urban construction”. Landscape and Urban Planning, 63 (2): 61-74.
  • IDAE. (2011). Plan de Energías Renovables 2011-2020. Madrid: IDAE. Consultado en: http://www.idae.es/index.php/id.670/mod.pags/mem.detalle
  • IEA. (2016). Energy technology perspectives 2016. Towards sustainable urban energy systems. Paris: International Energy Agency. Consultado en: https://www.iea.org/publications/freepublications/publication/EnergyTechnologyPerspectives2016_ExecutiveSummary_EnglishVersion.pdf
  • IEA-ETSAP e IRENA. (2015). Solar Heating and Cooling for Residential Applications. Technology Brief. Consultado en: http://www.irena.org/documentdownloads/publications/irena_etsap_tech_brief_r12_solar_thermal_residential_2015.pdf
  • IRENA, et al. (2016). Habitat III High-Level Forum on Renewable Energy in Urban Settings. Consultado en: http://habitat3.org/wp-content/uploads/RE-Energising-Cities-_Outcomedoc_26Oct2016.pdf
  • IRENA. (2016). Renewable energy in cities. Abu Dhabi: International Renewable Energy Agency. Consultado en: http://www.irena.org/DocumentDownloads/Publications/IRENA_Renewable_Energy_in_Cities_2016.pdf
  • ISHUGAH, T. F., et al. (2014). “Advances in wind energy resource exploitation in urban environment: a review”. Renewable and Sustainable Energy Reviews, 37: 613-626.
  • JARAMILLO, C. E. (2017). Estudio de metabolismo urbano en la ciudad de Cuenca. Cuenca: Universidad Politécnica Salesiana.
  • KENNEDY, CH., CUDDIHY, J. y ENGEL-YAN, J. (2007). “The changing metabolism of cities”. Journal of Industrial Ecology, 11 (2): 43-59.
  • KRAXNER, F., et al. (2016). “Bioenergy and the city – what can urban forests contribute?” Applied Energy, 165: 990-1003.
  • KUCUKALI, S. (2010). “Municipal water supply dams as a source of small hydropower in Turkey”. Renewable Energy, 35 (9): 2001-2007.
  • LEDUC, W. R. W. A. y ROVERS, R. (2008). “Urban tissue: the representation of the urban energy potential”. Dublin, ponencia presentada en 25th International Conference on Passive and Low Energy Architecture: Towards Zero Energy Building, PLEA.
  • LEDUC, W. R. W. A. y VAN KANN, F. M. G. (2013). “Spatial planning based on urban energy harvesting toward productive urban regions”. Journal of Cleaner Production, 39: 180-190.
  • MARTÍNEZ, J. A., MONTOYA, N. y SIERRA, A. M. (2014). “Energía del futuro: bioalcoholes a partir de residuos sólidos urbanos (RSU)”. Revista Escuela de Administración de Negocios, 77: 64-81. Consultado en: http://www.scielo.org.co/pdf/ean/n77/n77a03.pdf
  • MEJÍA-RODRÍGUEZ, J. A., ÁVILA-RAMÍREZ, D. C. y CÓRDOVA-CANELA, F. (2016). “Las innovaciones tecnológicas orientadas al autoabastecimiento energético sostenible. El caso de México”. Bitácora Urbano Territorial, 26 (1): 93-102. Consultado en: https://revistas.unal.edu.co/index.php/bitacora/article/view/43547
  • MOSCOVICI, D., et al. (2015). “Can sustainability plans make sustainable cities ? the ecological footprint implications of renewable energy within Philadelphia’s Greenworks Sustainability”. Science, Practice & Policy, 11 (1): 32-43.
  • NREL. (2017). System Advisor Model (SAM). Consultado en: https://sam.nrel.gov/
  • ONU. (2016). Proyecto de documento final de la Conferencia de las Naciones Unidas sobre la Vivienda y el Desarrollo Urbano Sostenible (Hábitat III). Quito: Naciones Unidas. Consultado en: http://habitat3.org/wp-content/uploads/Draft-Outcome-Document-of-Habitat-III-S.pdf
  • PÁEZ, A. (2010). “Energy-urban transition: the mexican case”. Energy Policy, 38 (11): 7226-7234.
  • PINCETL, S. (2012). “Nature, urban development and sustainability – what new elements are needed for a more comprehensive understanding?” Cities, 29 (2): 32-37.
  • REN, H., et al. (2010). “Feasibility assessment of introducing distributed energy resources in urban areas of China”. Applied Thermal Engineering, 30 (16): 2584-2593.
  • ROBERTS, J. J., et al. (2015). “Assessment of dry residual biomass potential for use as alternative energy source in the party of General Pueyrredón, Argentina”. Renewable and Sustainable Energy Reviews, 41: 568-583.
  • ROSAS-FLORES, J. A., ROSAS-FLORES, D. y FERNÁNDEZ ZAYAS, J. L. (2016). “Potential energy saving in urban and rural households of Mexico by use of solar water heaters, using geographical information system”. Renewable and Sustainable Energy Reviews, 53: 243-252.
  • SCHIEL, K., et al. (2016). “GIS-based modelling of shallow geothermal energy potential for CO2 emission mitigation in urban areas”. Renewable Energy, 86: 1023-1036.
  • SHEN, Y., et al. (2015). “An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs”. Renewable and Sustainable Energy Reviews, 50: 346-362.
  • XU, J., NI, T. y ZHENG, B. (2015). “Hydropower development trends from a technological paradigm perspective”. Energy Conversion and Management, 90: 195-206.
  • XYDIS, G., NANAKI, E. y KORONEOS, C. (2013). “Exergy analysis of biogas production from a municipal solid waste landfill”. Sustainable Energy Technologies and Assessments, 4: 20-28.
  • ZHANG, X., SHEN, L. y CHAN, S. Y. (2012). “The diffusion of solar energy use in HK: what are the barriers?” Energy Policy, 41: 241-249.
  • ZIVKOVIC, M., et al. (2016). “Exploring scenarios for more sustainable heating: the case of Niš, Serbia”. Energy, 115, (2): 1758-1770.
  • ZUBIZARRETA, J., et al. (2010). “Potential and cost of electricity generation from human and animal waste in Spain”. Renewable Energy, 35 (2): 498-505.