Changes in the soil due to the use of sheep in cover crop management in organic olive groves

  1. Mikel Cebadero Cayetano 1
  2. Juan Antonio Torres Cordero 2
  3. Gemma Siles Colmenero 2
  4. Emilia Fernández Ondoño 1
  1. 1 Facultad de Ciencias, Universidad de Granada.
  2. 2 Facultad de Ciencias Experimentales, Universidad de Jaén.
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Year of publication: 2020

Volume: 10

Issue: 1

Pages: 16-28

Type: Article


More publications in: Spanish Journal of Soil Science: SJSS


Cited by

  • Scopus Cited by: 3 (15-11-2023)
  • Web of Science Cited by: 1 (14-10-2023)
  • Dimensions Cited by: 1 (18-04-2023)

SCImago Journal Rank

  • Year 2020
  • SJR Journal Impact: 0.316
  • Best Quartile: Q3
  • Area: Soil Science Quartile: Q3 Rank in area: 81/156

Scopus CiteScore

  • Year 2020
  • CiteScore of the Journal : 1.1
  • Area: Soil Science Percentile: 32

Journal Citation Indicator (JCI)

  • Year 2020
  • Journal Citation Indicator (JCI): 0.21
  • Best Quartile: Q4
  • Area: SOIL SCIENCE Quartile: Q4 Rank in area: 41/43


(Data updated as of 18-04-2023)
  • Total citations: 1
  • Recent citations: 0
  • Field Citation Ratio (FCR): 0.38


This work studied the effects of cover crop management by livestock on soil properties, comparing it with other managements and uses of soil. For this, two olive-orchards were selected, one an ecological olive-orchard, surrounded by patches of natural vegetation and another under conventional management, both located in Pegalajar ( Jaén, Spain). The study area was divided into 7 plots with four management types and three uses: two of the plots were not cultivated, one was lucerne (ESP) and the other one holm oak (ENC); one plot was under conventional management, with bare soil due to the application of herbicides (BL); one plot was managed by mechanical clearing (CON); three plots had a cover crop that was managed in the following ways: two plots with only sheep, for 2 years (G) and six years (GA) and the third plot with a combined management of livestock and mechanical clearing (Mix). The constituents and properties studied were: texture, bulk density, humidity, pH, exchangeable bases and cation exchange capacity (CIC), nitrogen (N), oxidizable organic carbon (CO), soluble organic carbon (COS), assimilable phosphorus (P), enzymatic activities β-glucosidase and dehydrogenase. The organic carbon content was the constituent that most affected the other parameters. As expected, the soils under holm oak, followed by lucerne, showed the highest concentrations of total organic carbon and soluble organic carbon and nitrogen. However, the concentration of total carbon in soils with livestock management was equal to that of the lucerne. The sequences from highest to lowest concentration were ENC > GA, ESP, G > BL for total carbon, and ENC, ESP > CON, G, GA, MIX > BL for soluble carbon and nitrogen. In general bulk density and pH were lower in the uses and managements with higher CO content. On the contrary, the parameters of humidity, bases and cation exchange capacity were higher when the CO was also higher, although not always with significant differences. The β-Glucosidase activity was lower in holm oak, probably because the organic matter has a lower cellulose content. Finally, the dehydrogenase activity was significantly higher in holm oak and lucerne, which have continuous contributions of organic matter that favour a continual microbial activity, contrary to the rest of treatments that are more time-specific.

Bibliographic References

  • Albiach MR, Bonmatí M, Canet R, García C, García A, Gíl F, Gonzalez S, Hernández MT, Jiménez de ridder P, Leirós MªC, Lobo MªC, Rad C, Sastre I, Trasar C, Leirós MC. 2006. Sobre las enzimas del suelo y sus técnicas de medida. Edafología, 13(3), 117-125.
  • Andrade F H. 2011. La tecnología y la producción agrícola. El pasado y los actuales desafíos. Balcarce (Argentina). Ediciones INTA.
  • Banegas N, Maza M, Viruel E, Nasca J, Canteros F, Corbella R, Dos Santos D. 2019. Long-term impact of grazing and tillage on soil quality in the semi-arid Chaco (Argentina). Spanish Journal of Soil Science, 9(1).
  • Belsky AJ, Blumenthal DM. 1997. Effects of livestock grazing on stand dynamics and soils in upland forests of the Interior West. Conserv Biol. 11(2), 315-327.
  • Castellano MJ, Valone TJ. 2007. Livestock, soil compaction and water infiltration rate: evaluating a potential desertification recovery mechanism. J arid Environ, 71(1), 97-108.
  • CGIAR System Organization. 4 pour 1000 [Internet]. Montpellier: 2018. Available from:
  • Cole CV, Duxbury J, Freney J, Heinemeyer O, Minami K, Mosier A, Paustian K, Rosenberg N, Sampson N, Sauerbeck D, Zhao Q. 1997. Global estimates of potential mitigation of greenhouse gas emissions by agriculture. NUTR CYCL AGROECOSYS. 49: 221-228.
  • Espejo Pérez AJ, Rodríguez Lizana A, Giráldez JV, Ordóñez R. 2005. Influencia de la cubierta vegetal en la pérdida de suelo en olivar ecológico. Congreso Internacional sobre agricultura de conservación. Córdoba, 345-350.
  • Floch C, Chevremont AC, Joanico K., Capowiez Y, Criquet S. 2011. Indicators of pesticide contamination: Soil enzyme compared to functional diversity of bacterial communities via Biolog® Ecoplates. Eur J Soil Biol, 47(4), 256-263.
  • Fox J, Bouchet Valat M. (2019). Rcmdr: R Commander. R package version 2.5-3.
  • García A, Laurín M, Llosá MJ, Gonzálvez V, Sanz MJ, Porcuna JL. 2008. Contribución de la agricultura ecológica a la mitigación del cambio climático en comparación con la agricultura convencional. Agroecología, 1, 75-88.
  • Garcia C, Hernandez T, Costa F. 1997. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in soil science and plant analysis, 28(1-2), 123-134.
  • Ghani A, Dexter M, Perrott KW. 2003. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem. 35(9), 1231-1243.
  • Görres JH, Dichiaro M.J, Lyons JB, Amador JA. 1998. Spatial and temporal patternsof soil biological activity in a forest and an oldfield. Soil Biol Biochem. 219–230.
  • Gutiérrez Rojas I, Moreno Sarmiento N, Montoya D. 2015. Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Rev Iberoam Micol. 32(1), 1-12.
  • Hamilton III EW, Frank DA. 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 82(9), 2397-2402.
  • Haynes RJ, Francis GS. 1993. Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions. J Soil Sci. 44, 665–675.
  • Hernández AJ, Lacasta C, Pastor J. 2005. Effects of different management practices on soil conservation and soil water in a rainfed olive orchard. Agr Water Manage. 77(1-3), 232-248.
  • Junta de Andalucia. Observatorio de precios y mercado [Internet]. Junta de Andalucía. 2014. [modified 2019 March 24; cited 2019 March 24]. Available from:
  • Julca-Otiniano A, Meneses-Florián L, Blas-Sevillano R, Bello-Amez S. 2006. La materia orgánica, importancia y experiencia de su uso en la agricultura. Idesia (Arica). 24(1), 49-61.
  • Leirós MC, Trasar Cepeda C, Seoane S. Gil Sotres F. 2000. Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in area of the European temperate-hunid zone (Galicia, NW Spain): general parameters. Soil Biol Biochem. 32: 733-745.
  • Lordan, J, Pascual M, Villar JM, Fonseca F, Papió J, Montilla V, Rufat J. 2015. Use of organic mulch to enhance water-use efficiency and peach production under limiting soil conditions in a three year old orchard. Span J Agric Res. 13(4), 0904.
  • Martínez HE, Fuentes EJP, Acevedo HE. 2008. Carbono orgánico y propiedades del suelo. J. Soil Sc. Plant Nutr. 8(1):68-96
  • Matsuoka M, Mendes IC, Loureiro MF. (2003) Biomassa microbiana e atividade enzimática em solos sob vegetação nativa e sistemas agrícolas anuais e perenes na região de Primavera do leste (MT). REV Bras Cienc Solo. 27 :425-433.
  • Melo WJ. (1998) Enzimas no solo. In: MONIZ, A.C. et al (Ed). A responsabilidade social da Ciência do solo. Campinas: SBCS. 1:365- 378.
  • Mendes IC, Reis Junior FB editors. 2004. Uso de parâmetros microbiológicos como indicadores para avaliar a qualidade do solo e a sustentabilidade dos agroecosistemas [Internet]. Planaltina, DF: Embrapa. c 2004.[Cited 2019 Jun 29]. 34. Available from:
  • Minasny B, Malone BP, McBratney AB, Angers DA., Arrouays D, Chambers A, Chaplot V, Chen ZS, Cheng K., Das BS, Field DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O’Rourke S, Richer de Forges AC, Odeh I, Padarian J, Paustian K., Pan G, Poggio L, Savin I, Stolbovoy V, Stockmann U, Sulaeman Y, Tsui C, Vågen TG, Wesemael B, Winowiecki L. 2017. Soil carbon 4 per mille. Geoderma, 292, 59-86.
  • Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. [Internet]. Madrid. Gobierno de España. 2018. [modified 2018 Jan 12; cited 2019 Jul 30]. Available from:
  • Miralles I. 2007. Calidad de Suelos en Ambientes Calizos Mediterráneos: Parque Natural Sierra María-Los Vélez. Granada. Editorial de la Universidad de Granada.
  • Nieto OM, Fernández-Ondoño E, Castro J. 2012. Sustainable agricultural practices for Mediterranean olive grove. Effect of soil management on soil properties. Spanish Journal of Soil Science, 2(1).
  • Novelli LE, Caviglia OP, Melchiori RJM. 2011. Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols. Geoderma. 167, 254-260.
  • Olsen SR. 1954. Estimation of avaible phosphorus on soils by extraction with sodium bicarbonate. United States Department of Agriculture. Cic. nº 939.
  • Paiva AO, Rezende AV, Pereira RS. (2011) Estoque de carbono em cerrado Sensu Stricto do Distrito Federal. Revista Árvore. 35:527- 538.
  • Pastor Muñoz Cobo M. 2006. Efecto De Las Cubiertas Vegetales En El Contenido De Agua Del Suelo. Vida Rural, 28: 28 - 35.
  • Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible. Junta de Andalucia [Internet]. 2015. Plan director del olivar andaluz. [modified 2015 March 10; cited 2019 July 30]. Available from:
  • Ramos ME, Benítez E, García PA, Robles AB. 2010. Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: Effects on soil quality. Appl Soil Ecol, 44(1), 6-14.
  • Reeves DW. 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till Res, 43(1-2), 131-167.
  • Richards LA. 1945. Pressure-membranaapparattus and use. Agri. Engin. Nº 28. 451-454
  • Robert M. 2002. Captura de carbono en los suelos para un mejor manejo de la tierra (Vol. 96). FAO.
  • Rodríguez Lizana A, Ordóñez Fernández R, González Sánchez EJ. 2004. Agricultura de conservación en cultivos leñosos (olivar). Cubiertas vegetales. Cualidades y tipos principales. En: Gil-Ribes JL, Blanco-Roldán GL, Rodríguez-Lizana A, editores. Técnicas de Agricultura de Conservación. MundiPrensa. Madrid. P. 113-124.
  • Saá A., Trasar Cepeda MC, Gil-Sotres F, Carballas T. 1993. Changes in soil phosphorus and phosphatase activity inmediately following forest fires. Soil Biol Biochem. 25: 1223-1230.
  • SCS-USDA. 1972. National Engineering Handbook, Section 4, Hydrology. SCS-USDA, Washington, DC.
  • Six J, Conant RT, Paul EA, K. Paustian. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155-176.
  • Skujins J. 1976. Enzymes in soil. In: Mc Laren, A.D., Peterson, G.H. (Eds.), Soil Biochemistry, Marcel Dekker. Inc. New York, USA, pp. 371–414.
  • Torres JA, García-Fuentes A., Ruiz L, Siles G, Tendero FV, Ondoño E F. 2013. Ganado ovino como herramienta para el control de la cubierta vegetal en el olivar ecológico: diversificación de la riqueza. Ganadería. Revista Técnica Ganadera. 88: 60-63.
  • Throop HL, Archer SR, Monger HC, Waltman S. 2012. When bulk density methods matter: Implications for estimating soil organic carbon pools in rocky soils. J Arid Environ. 77: 66-71
  • Trasar Cepeda C, Leiros MC, Gil-Sotres F. 2000. Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate-humid zone (Galicia, NW Spain): specific parameters. Soil Biol Biochem. 32: 747-755.
  • Tyurin IV. 1951. Analitical procedure for a comparature study of soil humus. Trudy Pochr. Inst. Dokuchaev. 33: 5-21.
  • Valle F, Navarro FB, Jiménez MN, Algarra JA, Arrojo E, Asensi A, Cabello J, Cano E, Cañadas E, Cueto M, Dana E, De Simón E, Díez B, García A, Giménez E, Gómez F, Linares JE, Lorite J, Melendo M, Montoya MC, Mota JF, Peñas J, Salazar C, Torres JA. 2004. Modelos de Restauración Forestal I y II. Junta de Andalucía., Consejería de Medio Ambiente. Sevilla.
  • Vargas Osuna E, Aldebis HK. 2007. Control de plagas en olivar: cambios inducidos por la cobertura vegetal. Cubiertas vegetales en olivar. Junta de Andalucía. Consejería de Agricultura y Pesca. Pag 115.