Estudio de la dinámica nutricional en hojas de olivoperiodos de estabilidad analítica

  1. Nieto, Juana
  2. García-Fuentes, Antonio
  3. García, Llenalia M.
  4. Fernández-Ondoño, Emilia
Journal:
Spanish Journal of Soil Science: SJSS

ISSN: 2253-6574

Year of publication: 2017

Volume: 7

Issue: 1

Pages: 40-58

Type: Article

DOI: 10.3232/SJSS.2017.V7.N1.04 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Spanish Journal of Soil Science: SJSS

Abstract

The aim of this study was to establish the evolution curves of macro- and micro-nutrients in olive leaves and the periods of time in which they are statistically stable and can be considered suitable for a nutritional diagnosis. The study was carried out in two farms of the province of Jaén (Andalucia, Southern Spain), with olive trees of the Picual variety, under an irrigation regime and no nutritional deficiencies over the entire year. The evolution curves of each nutrient had great similarities when comparing between farms and between periods. Only in some periods the farm “Poco Humo” had higher concentrations, probably due to the most favorable edaphic characteristics of this farm. Nitrogen and phosphorus showed minimum concentrations when the leaves were young and when they were one year old, and maximum concentrations during the winter. Potassium and boron showed higher concentrations when the leaves were young, and the concentrations decreased throughout the first year of life. Concentrations of calcium, magnesium and manganese had the opposite behavior: these accumulated in leaf until reaching maximum values in winter and then remained stable, with some oscillations but without statistically significant differences. No changes were observed in the zinc concentrations in the sampled periods. Periods of at least two consecutive months without statistically significant differences were found during the winter period for all elements except nitrogen. Analytical stability was observed from the second fortnight of May till the first fortnight of August for all elements except phosphorus and boron.

Bibliographic References

  • Arquero O, Barranco D, Benlloch M. 2006. Potassium starvation increases stomatal conductance in olive trees. Hortic Sci. 41(2):433-436.
  • Basson WD, Bähmer RG, Stanton DA. 1969. An automated procedure the determination of boron in plant tissue. Analyst 94:1135.
  • Benlloch-González M, Quintero JM, Suárez MP, Sánchez-Lucas R, Fernández-Escobar R, Benlloch M. 2016. Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants. J Plant Physiol. 207:22-29.
  • Bouat A. 1954. Etude sur la physiologie de la nutrition de l’olivier (3ª Memoria). Ann Agron. Serie A.5:459-489.
  • Bouat A. 1976. Fertilización del olivo. En: FAO-INIA, editores. Olivicultura Moderna. Madrid: Editorial Agrícola Española, S.A. p. 127-147.
  • Brito FMV. 1971. Diagnostic foliare de l’olivier. Contribuition pour un mode d’echantillonnage adapté aux oliveraires du Portugal. IIIe Conf Int Techn Oléic. Torremolinos (España). 20 p.
  • Bueno LA, Sánchez E, Searles PS. 2011. Seasonal changes in mineral nutrient concentrations of olive leaves in an arid region of Argentina. Acta Hortic. 924:69-76.
  • Cadahía C. 2008. La savia como índice de fertilización. Cultivos agroenergéticos, hortícolas, frutales y ornamentales. Madrid: Mundi-Prensa.
  • Centikaya H, Koc M, Kulak M. 2016. Monitoring of mineral and polyphenol content in olive leaves under drought conditions: Application chemometric techniques. Industrial Crops and Products 88:78-84.
  • Chapman HD. 1966. Diagnostic criteria for plant and soils. Berkeley, California: University of California, Div. Of Agric. Science. 793 p.
  • Chatzissavvidis C, Therios I. 2010. Response of four olive (Olea europaea L.) cultivars to six B concentrations: Growth performance, nutrient status and gas exchange parameters. Sci Hortic. 127:29-38.
  • Chatzistathis Th, Therios I, Alifragis D, Dimassi K. 2010. Effect of sampling time and soil type on Mn, Fe, Zn, Ca, Mg, K and P concentrations of olive (Olea europea L. cv. “Koroneiki”) leaves. Sci Hortic. 126:291-296.
  • Cheng LMF, Ranwala D. 2004. Nitrogen storage and its interaction with carbohydrates of young apple trees in response to nitrogen supply. Tree Physiol. 24:91-8.
  • Consejo Oleícola Internacional. 2015. NEWSLETTER – MERCADO OLEICOLA Nº 99 – Noviembre 2015. http://www.internationaloliveoil.org/documents/viewfile/10734-market-newsletter-november-2015. Accessed November 2016.
  • Delgado A, Benlloch M, Fernández-Escobar R. 1994. Mobilisation of boron in olive trees during flowering and fruit development. Hortic Sci. 29:616-618.
  • Dugger DM. 1983. Boron in plant metabolism. In: Lauchli A, Bieleski RL, editors. Encyclopedia of Plant Physiology. New Ser. vol 15B, Inorganic Plant Nutrition. Berlin: Springer. p. 626-650.
  • El-Fouly MM, Shaaban SHA, El-Sayed AA. 2008. Evaluation of seasonal nutrient status in the leaves of different olive varieties grown on calcareous soils. Journal of Applied Horticulture 10(1):59-62.
  • Fan M, Bie Z, Xie H, Zhang F, Zhao S, Zhang H. 2013. Genotypic variation for potassium efficiency in wild and domesticated watermelons under ampleand limited potassium supply. J Plant Nutr Soil Sc. 176:466-473.
  • Fernández JE. 2014. Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environ Exp Bot. 103:158-179.
  • Fernández-Escobar R. 1997. Fertilización. In: Barranco D, Fernández-Escobar R, Rallo L, editores. El cultivo del olivo. Madrid: Mundi-Prensa-Junta de Andalucía. p. 229-249.
  • Fernández-Escobar R. 2011. Use and abuse of nitrogen in olive fertilization. Acta Hortic. 888:249-257.
  • Fernández-Escobar R, Antonaya-Baena M F, Sánchez-Zamora MA, Molina-Soria C. 2014. The amount of nitrogen applied and nutritional status of olive plants affect nitrogen uptake efficiency. Sci Hortic. 167:1-4.
  • Fernández-Escobar R, García-Novelo JM, Molina-Soria C, Parra MA. 2012. An approach to nitrogen balance in olive orchards. Sci Hortic. 135:219-226.
  • Fernández-Escobar R, García-Novelo JM, Restrepo-Díaz H. 2011. Mobilization of nitrogen in the olive bearing shots and after foliar application of urea. Sci Hortic. 127:452-454.
  • Fernández-Escobar R, Marín L. 1997. Nitrogen fertilization in olive orchards. III International Symposium on Olive Growing 474:333-336.
  • Fernández-Escobar R, Moreno R, García-Creus M. 1999. Seasonal changes of mineral nutrients in olive leaves during the alternate-bearing cycle. Sci Hortic. 82:25-45.
  • Fernández-Escobar R, Moreno R, Sánchez-Zamora MA. 2004. Nitrogen Dynamics in the Olive Bearing Shoot. Hortic Sci. 39(6):1406-1411.
  • Ferreira J, García-Ortiz A, Frías L, Fernández A. 1986. Los nutrientes N, P, K en la fertilización del olivar. Olea. 17:141-152.
  • Freeman M, Uriu K, Hartmann HT. 1994. Diagnosing and correcting nutrient problems. In: Ferguson L, Sibbett GS, Martin GC, editors. Olive Production Manual. Oakland, California: University of California-Agriculture and Natural Resources. Publication 3353. p. 77-86.
  • Gardiner J, Luo, Z, Roman LA. 2009. Fixed effects, random effects and GEE: What are the differences. Statistics in Medicine 28:221-239.
  • Guérin V, Huché-Thélier L, Charpentier S. 2007. Mobilisation of nutrients and transport via the xylem sap in a shrub (Ligustrum ovalifolium) during spring growth: N and C compounds and interactions. J Plant Physiol. 164:562-573. Hanson EJ. 1991. Movement of boron out of fruit tree leaves. Hortic Sci. 26:271-273.
  • Harrel JFE. 2001. Regression Modelling Strategies. New York: Springer Science.
  • Lehto T, Ruuhola T, Dell B. 2010. Boron in forest trees and forest ecosystems. Forest Ecol Manag. 260:2053-2069.
  • Martínez HEP, Souza RB, Bayona JA, Venegas VHA, Sanz M. 2003. Coffee-tree floral analysis as a mean of nutritional diagnosis. J Plant Nutr. 26 (7):1467-1482.
  • Ministerio de Agricultura, Alimentación y Medio Ambiente. 2015. Encuesta sobre superficies y rendimientos de cultivos. Resultados 2015. http://www.mapama.gob.es/es/estadistica/temas/estadisticas-agrarias/boletin2015_tcm7-424015.pdf. Accessed Nov 2016.
  • Ministerio de Agricultura, Pesca y Alimentación. 1994. Métodos Oficiales de Análisis. III. Madrid: Ministerio de Agricultura, Pesca y Alimentación.
  • Morales-Sillero A, Fernández JE, Beltrán G, Jiménez R, Troncoso A. 2007. Influence of fertigation in “Manzanilla de Sevilla” olive oil quality. Hort Sci. 42:1157-1162.
  • Morales-Sillero A, Fernández JE, Ordovás J, Suárez MP, Pérez JA, Liñán J, López EP, Girón I, Troncoso A. 2009. Plant-soil interactions in a fertigated “Manzanilla de Sevilla” olive orchard. Plant Soil 319:147-162.
  • Nable RO, Banuelos GS, Paull JG. 1997. Boron toxicity. Plant Soil 193:181-198.
  • Neilsen GH, Neilsen D, Herbert LC, Hogue EJ. 2004. Response of apple to fertigation of N and K under conditions susceptible to the development of K deficiency. J Am Soc Hortic Sci. 129:26-31.
  • Neilsen GH, Parchomchuk P, Meheriuk M, Neilsen D. 1998. Development and correction of K deficiency in drip irrigated apple. Hortic Sci. 33:258-261.
  • Oosterhuis DM, Loka DA, Raper TB. 2013. Potassium and stress alleviation: physiological functions and management of cotton. J Plant Nutr Soil Sc. 176:331-343.
  • Ortega Nieto JM. 1965. La qualité du fruit chez l’Olivier. In: International Potash Institute, editor. Le potassium et la qualité des produits agricoles: raisins de table et vins, olive et huile d'olive, tomates, liège. Lisbonne: 3e Colloque de l’Institut International de la Potasse. p. 115-117.
  • Quintanilla Rejado P. 1963. Fertilisation de l’Olivier. Bull Docum Ass Int Fab de Superphos. 36:11-38.
  • Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD. 2004. A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ. 25:1405-1414.
  • Rengasamy P. 2002. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric. 42:351-361.
  • Rivas-Martínez S. 2007. Mapa de series, geoseries y geopermaseries de vegetación de España. Itinera Geobotánica 17:1-435.
  • Rodrigues MA, Ferreira IQ, Claro AM, Arrobas M. 2012. Fertilizer recommendations for olive based upon nutrients removed in crop and Pruning. Sci Hortic. 142:205-211.
  • Samish RM, Moscichi WZ, Kessler B, Hoffmann M. 1961. Nutritional survey of Israel vineyards and olive groves by foliar analysis. Bet Dagan (Israel): Univ Inst Agr Div Pub. 39:1-28.
  • Saykhul A, Chatzistathis T, Chatzissavvidis C, Koundouras S, Therios I, Dimassi K. 2013. Potassium utilization efficiency of three olive cultivars grown in a hydroponic system. Sci Hortic. 162:55-62.
  • Soria L. 2002. Fertilización y riego en el olivar de la provincial de Jaén: Comarcas de La Loma y Sierra Morena. Tesis doctoral de la Universidad de Granada. Granada, España.
  • Therios IN. 2009. Olives. Crop Production Science in Horticulture. Series No 18. Wallingford (UK): CABI.
  • Troncoso A, Barroso A, Martín-Aranda J, Murillo JM, Moreno F. 1987. Effect of the fertilization level on the availability and loss of nutrients in a olive-orchard soil. J Plant Nutr. 10 (9-16):1555-1561.
  • Ul-Hassan Z, Arshad M, Khalid A. 2012. Evaluating potassium-use-efficient cot-ton genotypes using different ranking methods. J Plant Nutr. 34:1957-1972.
  • VV.AA. 2013. Anuario 2013 Olivar. Instituto de Estadística y Cartografía. Consejería Agricultura, Pesca y Desarrollo Rural. Junta de Andalucía. http://www.juntadeandalucia.es/export/drupaljda/Anuario%202013.zip. Accessed November 2016.
  • Wang L, Chen F. 2012. Genotypic variation of potassium uptake and use efficiency in cotton (Gossypium hirsutum L.). J Plant Nutr Soil Sc. 175:303-308.
  • Wolf B. 1971. The determination of boron in soil extracts, plant material, compost, manures, water and nutrient solutions. Commun Soil Sci Plan. 2:363-374.
  • Yang XE, Liu JX, Wang WM, Li H, Luo AC, Ye ZQ, Yang Y. 2003. Genotypic differences and some associated plant traits in potassium internal use efficiency of low land rice (Oryza sativa L.). Nutr Cycl Agroecosys. 67:273-282.