Digitization of religious artifacts with a structured light scanner

  1. Graciano, Alejandro
  2. Ortega, Lidia
  3. Segura, Rafael J.
  4. Feito, Francisco R.
Aldizkaria:
Virtual Archaeology Review

ISSN: 1989-9947

Argitalpen urtea: 2017

Alea: 8

Zenbakia: 17

Orrialdeak: 49-55

Mota: Artikulua

DOI: 10.4995/VAR.2016.4650 DIALNET GOOGLE SCHOLAR lock_openSarbide irekia editor

Beste argitalpen batzuk: Virtual Archaeology Review

Laburpena

The digitization process for religious artifacts is subject to inherent difficulties often ignored in theoretical models or pipelines. In this paper we aim to describe these problems, which are present in practical environments such as temples and churches, using white light scanners instead of other common devices or technologies such as laser scanners and photogrammetry. Our case study is based on the digitization of two religious statues belonging to a Catholic brotherhood located in a village of the Province of Jaén (Spain), one of them presenting especially several limitations. After performing the scanning process with a portable hand-held scanner, the images captured were processed until the final models were acquired. On the basis of the results obtained, we discuss the problems arising after using well-known procedures for the reconstruction of 3D models, their causes and some possible solutions to achieving a correct digitization. It should be noted that it is not the aim of this study to establish procedures for the digitization of religious artifacts, but rather to transmit the inherent constraints of these types of scenes.

Finantzaketari buruzko informazioa

This study has been partiallysupported by the Ministerio de Ciencia e Innovación and the European Union (via ERDF funds) underthe research project TIN2014-58218-R, and by the University of Jaén through the research project UJA2015/08/10

Finantzatzaile

Erreferentzia bibliografikoak

  • Artec Group (2016). Artec 3D Scanners. Retrieved October 10, 2016, from http://www.artec3d.com/
  • Barsanti, S. G., Micoli, L. L., & Guidi, G. (2013). Quick textured mesh generation for massive 3D digitization of museum artifacts. In 1st Digital Heritage International Congress (DigitalHeritage), (pp. 197–200). Marseille, France. http://dx.doi.org/10.1109/DigitalHeritage.2013.6743732
  • Bernardini, F., & Rushmeier, H. (2002). The 3D model acquisition pipeline. Computer Graphics Forum, 21(2), 149–172. http://doi.org/10.1111/1467-8659.00574
  • Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256. http://doi.org/10.1109/34.121791
  • Cignoni, P., Montani, C., & Scopigno, R. (1998). A comparison of mesh simplification algorithms. Computers & Graphics, 22(1), 37–54. http://doi.org/10.1016/S0097-8493(97)00082-4
  • Criminisi, A., Pérez, P., & Toyama, K. (2004). Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing, 13(9), 1200–1212. http://doi.org/10.1109/TIP.2004.833105
  • Crombez, N., Caron, G., & Mouaddib, E. (2015). 3D point cloud model colourization by dense registration of digital images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40-5/W4, 123–130. http://doi.org/10.5194/isprsarchives-XL-5-W4-123-2015
  • Dall’Asta, E., Bruno, N., Bigliardi, G., Zerbi, A., & Roncella, R. (2016). Photogrammetric techniques for promotion of archaeological heritage: The archaeological museum of Parma (Italy). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41(B5), 243–250. http://doi.org/10.5194/isprsarchives-XLI-B5-243-2016
  • Digne, J., Morel, J. M., Audfray, N., & Lartigue, C. (2010). High fidelity scan merging. Computer Graphics Forum, 29(5), 1643–1651. http://dx.doi.org/10.1111/j.1467-8659.2010.01773.x
  • Díaz-Marín, C., Aura-Castro, E., Sánchez-Belenguer, C., Vendrell-Vidal, E., Abate, A. F., & Narducci, F. (2015). Virtual Reconstruction and Representation of an Archaeological Terracotta Statue. In 2nd Digital Heritage International Congress (DigitalHeritage) (pp. 699–702). Granada, Spain. http://doi.org/10.1109/DigitalHeritage.2015.7419602
  • Happa, J., Williams, M., Turley, G., Earl, G., Dubla, P., Beale, G., & Chalmers, A. (2009). Virtual Relighting of a Roman Statue Head from Herculaneum: A Case Study. In 6th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa (pp 5–12). Pretoria, South Africa. http://dx.doi.org/10.1145/1503454.1503456
  • Hermon, S., Iannone, G., Fakka, M., Khalaily, H., Avni, G., & Re’em, A. (2013). Digitizing the Holy - 3D Documentation and analysis of the architectural history of the ”Room of the Last Supper” - the Cenacle in Jerusalem. In 1st Digital Heritage International Congress (DigitalHeritage), (pp. 359–362). Marseille, France. http://dx.doi.org/10.1109/DigitalHeritage.2013.6744780
  • Kiourt, C., Koutsoudis, A., Arnaoutoglou, F., Petsa, G., Markantonatou, S., & Pavlidis, G. (2015). A dynamic web-based 3D virtual museum framework based on open data. In 2nd Digital Heritage International Congress (DigitalHeritage) (pp. 647–750). Granada, Spain. http://doi.org/10.1109/DigitalHeritage.2015.7419589
  • Lanitis, A., Stylianou, G., & Voutounos, C. (2012). Virtual restoration of faces appearing in byzantine icons. Journal of Cultural Heritage, 13(4), 404–412. http://dx.doi.org/10.1016/j.culher.2012.01.001
  • Luo, M., & Bors, A. G. (2011). Surface-preserving robust watermarking of 3-D shapes.IEEE Transactions on Image Processing, 20(10), 2813–2826. http://dx.doi.org/10.1109/TIP.2011.2142004
  • López-Moreno, J., Hadap, S., Reinhard, E., & Gutierrez, D (2010). Compositing images through light source detection. Computers & Graphics, 34(6), 698–707. http://dx.doi.org/10.1016/j.cag.2010.08.004
  • Menna, F., Nocerino, E., Remondino, F., Dellepiane, M., Callieri, M., & Scopigno, R. (2016). 3D digitization of an heritage masterpiece – A critical analysis on quality assessment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 41(B5), 675–683. http://dx.doi.org/10.5194/isprsarchives-XLI-B5-675-2016
  • Nabil, M., & Saleh, F. (2014). 3D reconstruction from images for museum artefacts: A comparative study. In International Conference on Virtual Systems & Multimedia (VSMM), (pp. 257–260). Hong Kong. http://dx.doi.org/10.1109/VSMM.2014.7136681
  • Nicolae, C., Nocerino, E., Menna, F., & Remondino, F. (2014). Photogrammetry applied to problematic artefacts. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 451–456. http://dx.doi.org/10.5194/isprsarchives-XL-5-451-2014
  • Polhemus (2016). FastSCAN scanner. Retrieved October 10, 2016, from http://polhemus.com/scanningdigitizing/fastscan/
  • Pérez, A., & Robleda, G. (2015). 3D Virtualization by close range photogrammetry indoor Gothic Church Apses. The case study of Church of San Francisco in Betanzos (La Coruña, Spain). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40-5(W4), 201–206. http://dx.doi.org/10.5194/isprsarchives-XL-5-W4-201-2015
  • Remondino, F. (2011). Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sensing, 3(12), 1104–1138. http://dx.doi.org/10.3390/rs3061104
  • Rinaudo, F., Chiabrando, F., Lingua, A., & Spanò, A. (2012). Archaelogical site monitoring: UAV photogrammetry can be an answer. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39(B5), 583–588. http://dx.doi.org/10.5194/isprsarchives-XXXIX-B5-583-2012
  • Rodriguez-Gonzálvez, P., Nocerino, E., Menna, F., Minto, S., & Remondino, F. (2013). 3D surveying & modeling of underground passages in WWI fortifications. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5(W4)), 17–24. http://dx.doi.org/10.5194/isprsarchives-XL-5-W4-17-2015
  • Salimbeni, R., Pini, R., & Siano, S. (2003). The Optocantieri project: toward a synergy between optoelectronics and information science for cultural heritage conservation. In SPIE 5146 - The International Society for Optical Engineering, (pp. 24–33). http://dx.doi.org/10.1117/12.506181
  • Sander, P. V., Snyder, J., Gortler, S. J., & Hoppe, H. (2001). Texture mapping progressive meshes. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (SIGGRAPH '01). ACM, New York, NY, USA, (pp. 409–416). http://dx.doi.org/10.1145/383259.383307
  • Soria, G., Ortega, L., Feito, F. R., & Barroso, I. (2015). Processing panoramic images in heritage. Jaen Cathedral. Virtual Archaeology Review, 6(13), 28–34. http://doi.org/10.4995/var.2015.4368
  • Styliani, S., Fotis, L., Kostas, K., & Petros, P. (2009). Virtual museums, a survey and some issues for consideration. Journal of Cultural Heritage, 10(4), 520–528. http://dx.doi.org/10.1016/j.culher.2009.03.003
  • Van Gasteren, M. (2013). Fiel reproducción de Santa Teresa de Jesús y Cristo ”El Amarrado” de Gregorio Fernández a base de Tecnologías 3D. Virtual Archaeology Review, 4(8), 33–36. http://dx.doi.org/10.4995/var.2013.4284
  • Wang, K., Lavoué, G., Denis, F., & Baskurt, A. (2011). Robust and blind mesh watermarking based on volume moments. Computer & Graphics, 35(1), 1–19. http://dx.doi.org/10.1016/j.cag.2010.09.010